BatchNormTrainingBackward#
General#
BatchNormTrainingBackward operation calculated the gradients of input tensors.
Operation attributes#
Attribute Name |
Description |
Value Type |
Supported Values |
Required or Optional |
|---|---|---|---|---|
A number to be added to the variance to avoid division by zero. |
f32 |
A positive float value |
Required |
|
Controls how to interpret the shape of |
string |
|
Optional |
Execution arguments#
The inputs and outputs must be provided according to below index order when constructing an operation.
Inputs#
Index |
Argument Name |
Required or Optional |
|---|---|---|
0 |
|
Required |
1 |
|
Required |
2 |
|
Required |
3 |
|
Required |
4 |
|
Optional |
Outputs#
Index |
Argument Name |
Required or Optional |
|---|---|---|
0 |
|
Required |
1 |
|
Optional |
2 |
|
Optional |
Note
diff_gamma and diff_beta should be either both provided or neither provided. If neither provided, the input gamma will be ignored.
Supported data types#
BatchNormTrainingBackward operation supports the following data type combinations.
Src / Diff_dst / Diff_src |
Mean / Variance / Gamma / Diff_gamma / Diff_beta |
|---|---|
f32 |
f32 |
bf16 |
f32, bf16 |
f16 |
f32 |
Implementation Notes#
BatchNormTrainingBackward supports in-place operations, meaning that diff_dst can be used as both input and output (diff_src). In case of in-place operation, the original diff_dst data will be overwritten. Use in-place operations whenever possible for performance.