hbmv#
Computes a matrix-vector product using a Hermitian band matrix.
Description
The hbmv routines compute a scalar-matrix-vector product and add the
result to a scalar-vector product, with a Hermitian band matrix. The
operation is defined as
where:
alpha and beta are scalars,
A is an n-by-n Hermitian band matrix, with k
super-diagonals,
x and y are vectors of length n.
hbmv supports the following precisions.
T
std::complex<float>
std::complex<double>
hbmv (Buffer Version)#
Syntax
namespace oneapi::math::blas::column_major {
    void hbmv(sycl::queue &queue,
              oneapi::math::uplo upper_lower,
              std::int64_t n,
              std::int64_t k,
              T alpha,
              sycl::buffer<T,1> &a,
              std::int64_t lda,
              sycl::buffer<T,1> &x,
              std::int64_t incx,
              T beta,
              sycl::buffer<T,1> &y,
              std::int64_t incy)
}
namespace oneapi::math::blas::row_major {
    void hbmv(sycl::queue &queue,
              oneapi::math::uplo upper_lower,
              std::int64_t n,
              std::int64_t k,
              T alpha,
              sycl::buffer<T,1> &a,
              std::int64_t lda,
              sycl::buffer<T,1> &x,
              std::int64_t incx,
              T beta,
              sycl::buffer<T,1> &y,
              std::int64_t incy)
}
Input Parameters
- queue
 The queue where the routine should be executed.
- upper_lower
 Specifies whether
Ais upper or lower triangular. See oneMath defined datatypes for more details.- n
 Number of rows and columns of
A. Must be at least zero.- k
 Number of super-diagonals of the matrix
A. Must be at least zero.- alpha
 Scaling factor for the matrix-vector product.
- a
 Buffer holding input matrix
A. Must have size at leastlda*n. See Matrix Storage for more details.- lda
 Leading dimension of matrix
A. Must be at least (k+ 1), and positive.- x
 Buffer holding input vector
x. The buffer must be of size at least (1 + (m- 1)*abs(incx)). See Matrix Storage for more details.- incx
 Stride of vector
x. Must not be zero.- beta
 Scaling factor for vector
y.- y
 Buffer holding input/output vector
y. The buffer must be of size at least (1 + (n- 1)*abs(incy)). See Matrix Storage for more details.- incy
 Stride of vector
y. Must not be zero.
Output Parameters
- y
 Buffer holding the updated vector
y.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
oneapi::math::invalid_argument
oneapi::math::unsupported_device
hbmv (USM Version)#
Syntax
namespace oneapi::math::blas::column_major {
    sycl::event hbmv(sycl::queue &queue,
                     oneapi::math::uplo upper_lower,
                     std::int64_t n,
                     std::int64_t k,
                     value_or_pointer<T> alpha,
                     const T *a,
                     std::int64_t lda,
                     const T *x,
                     std::int64_t incx,
                     value_or_pointer<T> beta,
                     T *y,
                     std::int64_t incy,
                     const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::math::blas::row_major {
    sycl::event hbmv(sycl::queue &queue,
                     oneapi::math::uplo upper_lower,
                     std::int64_t n,
                     std::int64_t k,
                     value_or_pointer<T> alpha,
                     const T *a,
                     std::int64_t lda,
                     const T *x,
                     std::int64_t incx,
                     value_or_pointer<T> beta,
                     T *y,
                     std::int64_t incy,
                     const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
 The queue where the routine should be executed.
- upper_lower
 Specifies whether
Ais upper or lower triangular. See oneMath defined datatypes for more details.- n
 Number of rows and columns of
A. Must be at least zero.- k
 Number of super-diagonals of the matrix
A. Must be at least zero.- alpha
 Scaling factor for the matrix-vector product. See Scalar Arguments in BLAS for more details.
- a
 Pointer to the input matrix
A. The array holding input matrixAmust have size at leastlda*n. See Matrix Storage for more details.- lda
 Leading dimension of matrix
A. Must be at least (k+ 1), and positive.- x
 Pointer to input vector
x. The array holding input vectorxmust be of size at least (1 + (m- 1)*abs(incx)). See Matrix Storage for more details.- incx
 Stride of vector
x. Must not be zero.- beta
 Scaling factor for vector
y. See Scalar Arguments in BLAS for more details.- y
 Pointer to input/output vector
y. The array holding input/output vectorymust be of size at least (1 + (n- 1)*abs(incy)). See Matrix Storage for more details.- incy
 Stride of vector
y. Must not be zero.- dependencies
 List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- y
 Pointer to the updated vector
y.
Return Values
Output event to wait on to ensure computation is complete.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
oneapi::math::invalid_argument
oneapi::math::unsupported_device
oneapi::math::device_bad_alloc
Parent topic: BLAS Level 2 Routines