unmtr#
Multiplies a complex matrix by the complex unitary matrix Q determined by hetrd.
Description
unmtr supports the following precisions.
T
std::complex<float>
std::complex<double>
The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A = QTQ^H\). Use this routine after a call to hetrd.
Depending on the parameters side and trans, the routine can
form one of the matrix products \(QC\), \(Q^{H}C\),
\(CQ\), or \(CQ^{H}\) (overwriting the result on \(C\)).
unmtr (Buffer Version)#
Syntax
namespace oneapi::math::lapack {
  void unmtr(cl::sycl::queue &queue, oneapi::math::side side, oneapi::math::uplo upper_lower, oneapi::math::transpose trans, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}
Input Parameters
In the descriptions below, r denotes the order of \(Q\):
\(r\)=\(m\)  | 
if   | 
\(r\)=\(n\)  | 
if   | 
- queue
 The queue where the routine should be executed.
- side
 Must be either
side::leftorside::right.If
side=side::left, \(Q\) or \(Q^{H}\) is applied to \(C\) from the left.If
side=side::right, \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.- upper_lower
 Must be either
uplo::upperoruplo::lower. Uses the sameupper_loweras supplied to hetrd.- trans
 Must be either
transpose::nontransortranspose::conjtrans.If
trans=transpose::nontrans, the routine multiplies \(C\) by \(Q\).If
trans=transpose::conjtrans, the routine multiplies \(C\) by \(Q^{H}\).- m
 The number of rows in the matrix \(C\) (\(m \ge 0\)).
- n
 The number of columns the matrix \(C\) (\(n \ge 0\)).
- k
 The number of elementary reflectors whose product defines the matrix \(Q\) (\(0 \le k \le n\)).
- a
 The buffer
aas returned by hetrd.- lda
 The leading dimension of
a\((\text{lda} \ge \max(1,r))\).- tau
 The buffer
tauas returned by hetrd. The dimension oftaumust be at least \(\max(1,r-1)\).- c
 The buffer
ccontains the matrix \(C\). The second dimension ofcmust be at least \(\max(1,n)\).- ldc
 The leading dimension of
c\((\text{ldc} \ge \max(1,m))\).- scratchpad_size
 Size of scratchpad memory as a number of floating point elements of type
T. Size should not be less than the value returned by unmtr_scratchpad_size function.
Output Parameters
- c
 Overwritten by the product \(QC\), \(Q^{H}C\), \(CQ\), or \(CQ^{H}\) (as specified by
sideandtrans).- scratchpad
 Buffer holding scratchpad memory to be used by routine for storing intermediate results.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
oneapi::math::device_bad_alloc
oneapi::math::unsupported_device
oneapi::math::lapack::invalid_argument
oneapi::math::lapack::computation_error
Exception is thrown in case of problems during calculations. The
infocode of the problem can be obtained by info() method of exception object:If \(info=-i\), the \(i\)-th parameter had an illegal value.
If
infoequals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is of insufficient size, and required size should not be less than value return by detail() method of exception object.
unmtr (USM Version)#
Syntax
namespace oneapi::math::lapack {
  cl::sycl::event unmtr(cl::sycl::queue &queue, oneapi::math::side side, oneapi::math::uplo upper_lower, oneapi::math::transpose trans, std::int64_t m, std::int64_t n, const T *a, std::int64_t lda, const T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}
Input Parameters
In the descriptions below, r denotes the order of \(Q\):
\(r\)=\(m\)  | 
if   | 
\(r\)=\(n\)  | 
if   | 
- queue
 The queue where the routine should be executed.
- side
 Must be either
side::leftorside::right.If
side=side::left, \(Q\) or \(Q^{H}\) is applied to \(C\) from the left.If
side=side::right, \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.- upper_lower
 Must be either
uplo::upperoruplo::lower. Uses the sameupper_loweras supplied to hetrd.- trans
 Must be either
transpose::nontransortranspose::conjtrans.If
trans=transpose::nontrans, the routine multiplies \(C\) by \(Q\).If
trans=transpose::conjtrans, the routine multiplies \(C\) by \(Q^{H}\).- m
 The number of rows in the matrix \(C\) (\(m \ge 0\)).
- n
 The number of columns the matrix \(C\) (\(n \ge 0\)).
- k
 The number of elementary reflectors whose product defines the matrix \(Q\) (\(0 \le k \le n\)).
- a
 The pointer to
aas returned by hetrd.- lda
 The leading dimension of
a\((\text{lda} \ge \max(1,r))\).- tau
 The pointer to
tauas returned by hetrd. The dimension oftaumust be at least \(\max(1,r-1)\).- c
 The array
ccontains the matrix \(C\). The second dimension ofcmust be at least \(\max(1,n)\).- ldc
 The leading dimension of
c\((\text{ldc} \ge \max(1,m))\).- scratchpad_size
 Size of scratchpad memory as a number of floating point elements of type
T. Size should not be less than the value returned by unmtr_scratchpad_size function.- events
 List of events to wait for before starting computation. Defaults to empty list.
Output Parameters
- c
 Overwritten by the product \(QC\), \(Q^{H}C\), \(CQ\), or \(CQ^{H}\) (as specified by
sideand trans).- scratchpad
 Pointer to scratchpad memory to be used by routine for storing intermediate results.
Throws
This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions not covered here.
oneapi::math::device_bad_alloc
oneapi::math::unsupported_device
oneapi::math::lapack::invalid_argument
oneapi::math::lapack::computation_error
Exception is thrown in case of problems during calculations. The
infocode of the problem can be obtained by info() method of exception object:If \(info=-i\), the \(i\)-th parameter had an illegal value.
If
infoequals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is of insufficient size, and required size should not be less than value return by detail() method of exception object.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines