# ==============================================================================
# Copyright 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.utils import check_array, gen_batches
from sklearn.utils.validation import _check_sample_weight
from daal4py.sklearn._n_jobs_support import control_n_jobs
from daal4py.sklearn._utils import sklearn_check_version
from onedal.basic_statistics import (
IncrementalBasicStatistics as onedal_IncrementalBasicStatistics,
)
from .._device_offload import dispatch
from .._utils import IntelEstimator, PatchingConditionsChain
if sklearn_check_version("1.2"):
from sklearn.utils._param_validation import Interval, StrOptions
import numbers
import warnings
if sklearn_check_version("1.6"):
from sklearn.utils.validation import validate_data
else:
validate_data = BaseEstimator._validate_data
[docs]
@control_n_jobs(decorated_methods=["partial_fit", "_onedal_finalize_fit"])
class IncrementalBasicStatistics(IntelEstimator, BaseEstimator):
"""
Calculates basic statistics on the given data, allows for computation when the data are split into
batches. The user can use ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
the entire dataset.
Parameters
----------
result_options: string or list, default='all'
List of statistics to compute
batch_size : int, default=None
The number of samples to use for each batch. Only used when calling
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
is inferred from the data and set to ``5 * n_features``.
Attributes
----------
min_ : ndarray of shape (n_features,)
Minimum of each feature over all samples.
max_ : ndarray of shape (n_features,)
Maximum of each feature over all samples.
sum_ : ndarray of shape (n_features,)
Sum of each feature over all samples.
mean_ : ndarray of shape (n_features,)
Mean of each feature over all samples.
variance_ : ndarray of shape (n_features,)
Variance of each feature over all samples.
variation_ : ndarray of shape (n_features,)
Variation of each feature over all samples.
sum_squares_ : ndarray of shape (n_features,)
Sum of squares for each feature over all samples.
standard_deviation_ : ndarray of shape (n_features,)
Standard deviation of each feature over all samples.
sum_squares_centered_ : ndarray of shape (n_features,)
Centered sum of squares for each feature over all samples.
second_order_raw_moment_ : ndarray of shape (n_features,)
Second order moment of each feature over all samples.
n_samples_seen_ : int
The number of samples processed by the estimator. Will be reset on
new calls to ``fit``, but increments across ``partial_fit`` calls.
batch_size_ : int
Inferred batch size from ``batch_size``.
n_features_in_ : int
Number of features seen during ``fit`` or ``partial_fit``.
Note
----
Attribute exists only if corresponding result option has been provided.
Note
----
Names of attributes without the trailing underscore are
supported currently but deprecated in 2025.1 and will be removed in 2026.0
Examples
--------
>>> import numpy as np
>>> from sklearnex.basic_statistics import IncrementalBasicStatistics
>>> incbs = IncrementalBasicStatistics(batch_size=1)
>>> X = np.array([[1, 2], [3, 4]])
>>> incbs.partial_fit(X[:1])
>>> incbs.partial_fit(X[1:])
>>> incbs.sum_
np.array([4., 6.])
>>> incbs.min_
np.array([1., 2.])
>>> incbs.fit(X)
>>> incbs.sum_
np.array([4., 6.])
>>> incbs.max_
np.array([3., 4.])
"""
_onedal_incremental_basic_statistics = staticmethod(onedal_IncrementalBasicStatistics)
if sklearn_check_version("1.2"):
_parameter_constraints: dict = {
"result_options": [
StrOptions(
{
"all",
"min",
"max",
"sum",
"mean",
"variance",
"variation",
"sum_squares",
"standard_deviation",
"sum_squares_centered",
"second_order_raw_moment",
}
),
list,
],
"batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
}
def __init__(self, result_options="all", batch_size=None):
if result_options == "all":
self.result_options = (
self._onedal_incremental_basic_statistics.get_all_result_options()
)
else:
self.result_options = result_options
self._need_to_finalize = False
self.batch_size = batch_size
def _onedal_supported(self, method_name, *data):
patching_status = PatchingConditionsChain(
f"sklearn.basic_statistics.{self.__class__.__name__}.{method_name}"
)
return patching_status
_onedal_cpu_supported = _onedal_supported
_onedal_gpu_supported = _onedal_supported
def _get_onedal_result_options(self, options):
if isinstance(options, list):
onedal_options = "|".join(self.result_options)
else:
onedal_options = options
assert isinstance(onedal_options, str)
return options
def _onedal_finalize_fit(self, queue=None):
assert hasattr(self, "_onedal_estimator")
self._onedal_estimator.finalize_fit(queue=queue)
self._need_to_finalize = False
def _onedal_partial_fit(self, X, sample_weight=None, queue=None, check_input=True):
first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
if check_input:
if sklearn_check_version("1.0"):
X = validate_data(
self,
X,
dtype=[np.float64, np.float32],
reset=first_pass,
)
else:
X = check_array(
X,
dtype=[np.float64, np.float32],
)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
if first_pass:
self.n_samples_seen_ = X.shape[0]
self.n_features_in_ = X.shape[1]
else:
self.n_samples_seen_ += X.shape[0]
onedal_params = {
"result_options": self._get_onedal_result_options(self.result_options)
}
if not hasattr(self, "_onedal_estimator"):
self._onedal_estimator = self._onedal_incremental_basic_statistics(
**onedal_params
)
self._onedal_estimator.partial_fit(X, weights=sample_weight, queue=queue)
self._need_to_finalize = True
def _onedal_fit(self, X, sample_weight=None, queue=None):
if sklearn_check_version("1.2"):
self._validate_params()
if sklearn_check_version("1.0"):
X = validate_data(self, X, dtype=[np.float64, np.float32])
else:
X = check_array(X, dtype=[np.float64, np.float32])
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
n_samples, n_features = X.shape
if self.batch_size is None:
self.batch_size_ = 5 * n_features
else:
self.batch_size_ = self.batch_size
self.n_samples_seen_ = 0
if hasattr(self, "_onedal_estimator"):
self._onedal_estimator._reset()
for batch in gen_batches(X.shape[0], self.batch_size_):
X_batch = X[batch]
weights_batch = sample_weight[batch] if sample_weight is not None else None
self._onedal_partial_fit(
X_batch, weights_batch, queue=queue, check_input=False
)
self.n_features_in_ = X.shape[1]
self._onedal_finalize_fit(queue=queue)
return self
def __getattr__(self, attr):
result_options = self.__dict__["result_options"]
sattr = attr.removesuffix("_")
is_statistic_attr = (
isinstance(result_options, str) and (sattr == result_options)
) or (isinstance(result_options, list) and (sattr in result_options))
if is_statistic_attr:
if self._need_to_finalize:
self._onedal_finalize_fit()
if sattr == attr:
warnings.warn(
"Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0"
)
return getattr(self._onedal_estimator, sattr)
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attr}'"
)
[docs]
def partial_fit(self, X, sample_weight=None, check_input=True):
"""Incremental fit with X. All of X is processed as a single batch.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data for compute, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
y : Ignored
Not used, present for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
check_input : bool, default=True
Run ``check_array`` on X.
Returns
-------
self : object
Returns the instance itself.
"""
dispatch(
self,
"partial_fit",
{
"onedal": self.__class__._onedal_partial_fit,
"sklearn": None,
},
X,
sample_weight,
check_input=check_input,
)
return self
[docs]
def fit(self, X, y=None, sample_weight=None):
"""Calculate statistics of X using minibatches of size batch_size.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data for compute, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
y : Ignored
Not used, present for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
Returns
-------
self : object
Returns the instance itself.
"""
dispatch(
self,
"fit",
{
"onedal": self.__class__._onedal_fit,
"sklearn": None,
},
X,
sample_weight,
)
return self