# ==============================================================================
# Copyright 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import warnings
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.utils import check_array
from sklearn.utils.validation import _check_sample_weight
from daal4py.sklearn._n_jobs_support import control_n_jobs
from daal4py.sklearn._utils import sklearn_check_version
from onedal.basic_statistics import BasicStatistics as onedal_BasicStatistics
from .._device_offload import dispatch
from .._utils import IntelEstimator, PatchingConditionsChain
if sklearn_check_version("1.6"):
from sklearn.utils.validation import validate_data
else:
validate_data = BaseEstimator._validate_data
if sklearn_check_version("1.2"):
from sklearn.utils._param_validation import StrOptions
[docs]
@control_n_jobs(decorated_methods=["fit"])
class BasicStatistics(IntelEstimator, BaseEstimator):
"""
Estimator for basic statistics.
Allows to compute basic statistics for provided data.
Parameters
----------
result_options: string or list, default='all'
Used to set statistics to calculate. Possible values are ``'min'``, ``'max'``, ``'sum'``, ``'mean'``, ``'variance'``,
``'variation'``, ``sum_squares'``, ``sum_squares_centered'``, ``'standard_deviation'``, ``'second_order_raw_moment'``
or a list containing any of these values. If set to ``'all'`` then all possible statistics will be
calculated.
Attributes
----------
min_ : ndarray of shape (n_features,)
Minimum of each feature over all samples.
max_ : ndarray of shape (n_features,)
Maximum of each feature over all samples.
sum_ : ndarray of shape (n_features,)
Sum of each feature over all samples.
mean_ : ndarray of shape (n_features,)
Mean of each feature over all samples.
variance_ : ndarray of shape (n_features,)
Variance of each feature over all samples.
variation_ : ndarray of shape (n_features,)
Variation of each feature over all samples.
sum_squares_ : ndarray of shape (n_features,)
Sum of squares for each feature over all samples.
standard_deviation_ : ndarray of shape (n_features,)
Standard deviation of each feature over all samples.
sum_squares_centered_ : ndarray of shape (n_features,)
Centered sum of squares for each feature over all samples.
second_order_raw_moment_ : ndarray of shape (n_features,)
Second order moment of each feature over all samples.
Note
----
Attribute exists only if corresponding result option has been provided.
Note
----
Names of attributes without the trailing underscore are
supported currently but deprecated in 2025.1 and will be removed in 2026.0
Note
----
Some results can exhibit small variations due to
floating point error accumulation and multithreading.
Examples
--------
>>> import numpy as np
>>> from sklearnex.basic_statistics import BasicStatistics
>>> bs = BasicStatistics(result_options=['sum', 'min', 'max'])
>>> X = np.array([[1, 2], [3, 4]])
>>> bs.fit(X)
>>> bs.sum_
np.array([4., 6.])
>>> bs.min_
np.array([1., 2.])
"""
def __init__(self, result_options="all"):
self.result_options = result_options
_onedal_basic_statistics = staticmethod(onedal_BasicStatistics)
if sklearn_check_version("1.2"):
_parameter_constraints: dict = {
"result_options": [
StrOptions(
{
"all",
"min",
"max",
"sum",
"mean",
"variance",
"variation",
"sum_squares",
"standard_deviation",
"sum_squares_centered",
"second_order_raw_moment",
}
),
list,
],
}
def _save_attributes(self):
assert hasattr(self, "_onedal_estimator")
if self.result_options == "all":
result_options = onedal_BasicStatistics.get_all_result_options()
else:
result_options = self.result_options
if isinstance(result_options, str):
setattr(
self,
result_options + "_",
getattr(self._onedal_estimator, result_options),
)
elif isinstance(result_options, list):
for option in result_options:
setattr(self, option + "_", getattr(self._onedal_estimator, option))
def __getattr__(self, attr):
if self.result_options == "all":
result_options = onedal_BasicStatistics.get_all_result_options()
else:
result_options = self.result_options
is_deprecated_attr = (
isinstance(result_options, str) and (attr == result_options)
) or (isinstance(result_options, list) and (attr in result_options))
if is_deprecated_attr:
warnings.warn(
"Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0"
)
attr += "_"
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attr}'"
)
def _onedal_supported(self, method_name, *data):
patching_status = PatchingConditionsChain(
f"sklearnex.basic_statistics.{self.__class__.__name__}.{method_name}"
)
return patching_status
_onedal_cpu_supported = _onedal_supported
_onedal_gpu_supported = _onedal_supported
def _onedal_fit(self, X, sample_weight=None, queue=None):
if sklearn_check_version("1.2"):
self._validate_params()
if sklearn_check_version("1.0"):
X = validate_data(self, X, dtype=[np.float64, np.float32], ensure_2d=False)
else:
X = check_array(X, dtype=[np.float64, np.float32])
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
onedal_params = {
"result_options": self.result_options,
}
if not hasattr(self, "_onedal_estimator"):
self._onedal_estimator = self._onedal_basic_statistics(**onedal_params)
self._onedal_estimator.fit(X, sample_weight, queue)
self._save_attributes()
self.n_features_in_ = X.shape[1] if len(X.shape) > 1 else 1
[docs]
def fit(self, X, y=None, *, sample_weight=None):
"""Calculate statistics of X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data for compute, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
y : Ignored
Not used, present for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
Returns
-------
self : object
Returns the instance itself.
"""
dispatch(
self,
"fit",
{
"onedal": self.__class__._onedal_fit,
"sklearn": None,
},
X,
sample_weight,
)
return self