Correlation distance#
The Correlation Distance is a distance measure that quantifies the dissimilarity between vectors based on their linear correlation patterns.
Operation |
Computational methods |
Programming Interface |
||
Mathematical formulation#
Refer to Developer Guide: Correlation distance.
Programming Interface#
All types and functions in this section are declared in the
oneapi::dal::correlation_distance namespace and are available via inclusion of the
oneapi/dal/algo/correlation_distance.hpp header file.
Descriptor#
-
template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor# - Template Parameters:
Constructors
-
descriptor() = default#
Creates a new instance of the class with the default property values.
Training compute(...)#
Input#
-
template<typename Task = task::by_default>
class compute_input# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be task::compute.
Constructors
-
compute_input(const table &x, const table &y)#
Creates a new instance of the class with the given
xandy.
Properties
Result#
-
template<typename Task = task::by_default>
class compute_result# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be task::compute.
Constructors
-
compute_result()#
Creates a new instance of the class with the default property values.
Properties
Operation#
-
template<typename Descriptor>
correlation_distance::compute_result compute(const Descriptor &desc, const correlation_distance::compute_input &input)# - Parameters:
desc – Correlation Distance algorithm descriptor correlation_distance::descriptor.
input – Input data for the computing operation
- Preconditions
- input.data.is_empty == false