Support Vector Machine Classifier (SVM)#
Support Vector Machine (SVM) classification and regression are among popular algorithms. It belongs to a family of generalized linear classification problems.
Operation |
Computational methods |
Programming Interface |
|||
Mathematical formulation#
Refer to Developer Guide: Support Vector Machine Classifier.
Programming Interface#
All types and functions in this section are declared in the
oneapi::dal::svm
namespace and are available via inclusion of the
oneapi/dal/algo/svm.hpp
header file.
Descriptor#
-
template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default, typename Kernel = linear_kernel::descriptor<Float>>
class descriptor# - Template Parameters:
Float – The floating-point type that the algorithm uses for intermediate computations. Can be float or double.
Method – Tag-type that specifies an implementation of algorithm. Can be method::thunder or method::smo.
Task – Tag-type that specifies the type of the problem to solve. Can be task::classification, task::nu_classification, task::regression, or task::nu_regression.
Constructors
-
descriptor(const Kernel &kernel = kernel_t{})#
Creates a new instance of the class with the given descriptor of the kernel function.
Properties
-
std::int64_t max_iteration_count#
The maximum number of iterations \(T\). Default value: 100000.
- Getter & Setter
std::int64_t get_max_iteration_count() const
auto & set_max_iteration_count(std::int64_t value)
- Invariants
- max_iteration_count >= 0
-
bool shrinking#
A flag that enables the use of a shrinking optimization technique. Used with method::smo split-finding method only. Default value: true.
- Getter & Setter
bool get_shrinking() const
auto & set_shrinking(bool value)
-
std::int64_t class_count#
The number of classes. Used with task::classification and task::nu_classification. Default value: 2.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> std::int64_t get_class_count() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_class_count(std::int64_t value)
- Invariants
- class_count >= 2
-
double cache_size#
The size of cache (in megabytes) for storing the values of the kernel matrix. Default value: 200.0.
- Getter & Setter
double get_cache_size() const
auto & set_cache_size(double value)
- Invariants
- cache_size >= 0.0
-
double tau#
The threshold parameter \(\tau\) for computing the quadratic coefficient. Default value: 1e-6.
- Getter & Setter
double get_tau() const
auto & set_tau(double value)
- Invariants
- tau > 0.0
-
double nu#
The nu. Used with task::nu_classification and task::nu_regression. Default value: 0.5.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_nu_task_t<T>> double get_nu() const
template <typename T = Task, typename None = detail::enable_if_nu_task_t<T>> auto & set_nu(double value)
- Invariants
- 0 < nu <= 1
-
double epsilon#
The epsilon. Used with task::regression only. Default value: 0.1.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_epsilon_available_t<T>> double get_epsilon() const
template <typename T = Task, typename None = detail::enable_if_epsilon_available_t<T>> auto & set_epsilon(double value)
- Invariants
- epsilon >= 0
-
double accuracy_threshold#
The threshold \(\varepsilon\) for the stop condition. Default value: 0.0.
- Getter & Setter
double get_accuracy_threshold() const
auto & set_accuracy_threshold(double value)
- Invariants
- accuracy_threshold >= 0.0
-
double c#
The upper bound \(C\) in constraints of the quadratic optimization problem. Used with task::classification, task::regression, and task::nu_regression. Default value: 1.0.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_c_available_t<T>> double get_c() const
template <typename T = Task, typename None = detail::enable_if_c_available_t<T>> auto & set_c(double value)
- Invariants
- c > 0
-
const Kernel &kernel#
The descriptor of kernel function \(K(x, y)\). Can be linear_kernel::descriptor or polynomial_kernel::descriptor or rbf_kernel::descriptor or sigmoid_kernel::descriptor.
- Getter & Setter
const Kernel & get_kernel() const
auto & set_kernel(const Kernel &kernel)
Model#
-
template<typename Task = task::by_default>
class model# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be task::classification, task::nu_classification, task::regression, or task::nu_regression.
Constructors
-
model()#
Creates a new instance of the class with the default property values.
Public Methods
-
std::int64_t get_support_vector_count() const#
The number of support vectors.
Properties
-
double bias#
The bias. Default value: 0.0.
- Getter & Setter
double get_bias() const
auto & set_bias(double value)
-
std::int64_t second_class_response#
The second unique value in class responses. Used with task::classification and task::nu_classification.
- Getter & Setter
std::int64_t get_second_class_response() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_second_class_response(std::int64_t value)
-
const table &biases#
A \(class_count*(class_count-1)/2 \times 1\) table for task::classification and task::nu_classification and a \(1 \times 1\) table for task::regression and task::nu_regression containing constants in decision function.
- Getter & Setter
const table & get_biases() const
auto & set_biases(const table &value)
-
std::int64_t first_class_response#
The first unique value in class responses. Used with task::classification and task::nu_classification.
- Getter & Setter
std::int64_t get_first_class_response() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_first_class_response(std::int64_t value)
-
std::int64_t second_class_label#
The second unique value in class labels. Used with task::classification and task::nu_classification.
- Getter & Setter
std::int64_t get_second_class_label() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_second_class_label(std::int64_t value)
-
const table &coeffs#
A \(nsv \times class_count - 1\) table for task::classification and task::nu_classification and a \(nsv \times 1\) table for task::regression and task::nu_regression containing coefficients of Lagrange multiplier. Default value: table{}.
- Getter & Setter
const table & get_coeffs() const
auto & set_coeffs(const table &value)
-
std::int64_t first_class_label#
The first unique value in class labels. Used with task::classification and task::nu_classification.
- Getter & Setter
std::int64_t get_first_class_label() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_first_class_label(std::int64_t value)
Training train(...)#
Input#
-
template<typename Task = task::by_default>
class train_input# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be oneapi::dal::svm::task::classification, oneapi::dal::svm::task::nu_classification, oneapi::dal::svm::task::regression, or oneapi::dal::svm::task::nu_regression.
Constructors
-
train_input(const table &data, const table &responses, const table &weights = table{})#
Creates a new instance of the class with the given
data
,responses
andweights
.
Properties
-
const table &responses#
The vector of responses \(y\) for the training set \(X\). Default value: table{}.
- Getter & Setter
const table & get_responses() const
auto & set_responses(const table &value)
-
const table &labels#
The vector of labels \(y\) for the training set \(X\). Default value: table{}.
- Getter & Setter
const table & get_labels() const
auto & set_labels(const table &value)
Result#
-
template<typename Task = task::by_default>
class train_result# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be oneapi::dal::svm::task::classification, oneapi::dal::svm::task::nu_classification, oneapi::dal::svm::task::regression, or oneapi::dal::svm::task::nu_regression.
Constructors
-
train_result()#
Creates a new instance of the class with the default property values.
Public Methods
-
std::int64_t get_support_vector_count() const#
The number of support vectors.
Properties
-
double bias#
The bias. Default value: 0.0.
- Getter & Setter
double get_bias() const
auto & set_bias(double value)
-
const table &support_indices#
A \(nsv \times 1\) table containing support indices. Default value: table{}.
- Getter & Setter
const table & get_support_indices() const
auto & set_support_indices(const table &value)
-
const table &biases#
A \(class_count*(class_count-1)/2 \times 1\) table for task::classification and task::classification and \(1 \times 1\) table for task::regression and task::nu_regression containing constants in decision function.
- Getter & Setter
const table & get_biases() const
auto & set_biases(const table &value)
-
const table &coeffs#
A \(nsv \times class_count - 1\) table for task::classification and task::classification and \(nsv \times 1\) table for task::regression and task::nu_regression containing coefficients of Lagrange multiplier. Default value: table{}.
- Getter & Setter
const table & get_coeffs() const
auto & set_coeffs(const table &value)
Operation#
-
template<typename Descriptor>
svm::train_result train(const Descriptor &desc, const svm::train_input &input)# - Parameters:
desc – SVM algorithm descriptor svm::descriptor.
input – Input data for the training operation
- Preconditions
Inference infer(...)#
Input#
-
template<typename Task = task::by_default>
class infer_input# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be oneapi::dal::svm::task::classification, oneapi::dal::svm::task::nu_classification, oneapi::dal::svm::task::regression, or oneapi::dal::svm::task::nu_regression.
Constructors
-
infer_input(const model<Task> &trained_model, const table &data)#
Creates a new instance of the class with the given
model
anddata
property values.
Properties
Result#
-
template<typename Task = task::by_default>
class infer_result# - Template Parameters:
Task – Tag-type that specifies the type of the problem to solve. Can be oneapi::dal::svm::task::classification, oneapi::dal::svm::task::nu_classification, oneapi::dal::svm::task::regression, or oneapi::dal::svm::task::nu_regression.
Constructors
-
infer_result()#
Creates a new instance of the class with the default property values.
Properties
-
const table &decision_function#
The \(n \times 1\) table with the predicted class. Used with oneapi::dal::svm::task::classification and oneapi::dal::svm::task::nu_classification. decision function for each observation. Default value: table{}.
- Getter & Setter
const table & get_decision_function() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_decision_function(const table &value)
Operation#
-
template<typename Descriptor>
svm::infer_result infer(const Descriptor &desc, const svm::infer_input &input)# - Parameters:
desc – SVM algorithm descriptor svm::descriptor.
input – Input data for the inference operation
- Preconditions
- input.data.is_empty == false