{ "cells": [ { "cell_type": "markdown", "id": "c44da9e1-d76e-4956-8c19-9dade31e2bc5", "metadata": {}, "source": [ "# Intel® Extension for Scikit-learn Ridge Regression for IEEE-CIS Fraud Detection dataset" ] }, { "cell_type": "code", "execution_count": 1, "id": "963c5285-6470-474c-9550-6990029fa6a3", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from timeit import default_timer as timer\n", "from sklearn import metrics\n", "from sklearn.model_selection import train_test_split\n", "import warnings\n", "from sklearn.datasets import fetch_openml\n", "from sklearn.preprocessing import LabelEncoder\n", "from IPython.display import HTML\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "id": "421d17b2-a02f-464d-b196-9e46cd0bb396", "metadata": {}, "source": [ "### Download the data" ] }, { "cell_type": "code", "execution_count": 2, "id": "d0b94c65-bd7c-480e-bd56-e5adc711585f", "metadata": {}, "outputs": [], "source": [ "dataset = fetch_openml(data_id=45955, as_frame=True)\n", "data = dataset.frame" ] }, { "cell_type": "markdown", "id": "bcb6b5bc-5a76-4741-b350-518cd9c43f9c", "metadata": {}, "source": [ "### Preprocessing\n", "Let's encode categorical features with LabelEncoder" ] }, { "cell_type": "code", "execution_count": 3, "id": "7611e869-4079-4e6f-b0bf-9143bf7a8909", "metadata": {}, "outputs": [], "source": [ "data = dataset.frame\n", "\n", "# Simple imputation for missing values\n", "data = data.fillna(0)\n", "\n", "# Set the target variable\n", "x = data.drop(columns=['fraud'])\n", "y = data['fraud']" ] }, { "cell_type": "code", "execution_count": 4, "id": "d21fbc59-1f27-4114-a54e-51a5263a5d31", "metadata": {}, "outputs": [], "source": [ "for col in ['used_pin_number', 'online_order', 'used_chip', 'repeat_retailer']:\n", " le = LabelEncoder().fit(x[col])\n", " x[col] = le.transform(x[col])" ] }, { "cell_type": "code", "execution_count": 5, "id": "3b8403b6-62c0-47da-992c-bc205817b54b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((900000, 7), (100000, 7), (900000,), (100000,))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=0)\n", "x_train.shape, x_test.shape, y_train.shape, y_test.shape" ] }, { "cell_type": "code", "execution_count": 6, "id": "862647f0-e3cc-486f-b40f-c9d013b2b973", "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", "\n", "scaler_x = MinMaxScaler()\n", "scaler_y = StandardScaler()" ] }, { "cell_type": "code", "execution_count": 7, "id": "7fabcc1c-1632-45bb-aa8e-cc6edd864a51", "metadata": {}, "outputs": [], "source": [ "y_train = y_train.to_numpy().reshape(-1, 1)\n", "y_test = y_test.to_numpy().reshape(-1, 1)\n", "\n", "scaler_x.fit(x_train)\n", "x_train = scaler_x.transform(x_train)\n", "x_test = scaler_x.transform(x_test)\n", "\n", "scaler_y.fit(y_train)\n", "y_train = scaler_y.transform(y_train).ravel()\n", "y_test = scaler_y.transform(y_test).ravel()" ] }, { "cell_type": "markdown", "id": "c9e47e83-d09a-4243-a555-daba47a92140", "metadata": {}, "source": [ "### Patch original Scikit-learn with Intel® Extension for Scikit-learn\n", "Intel® Extension for Scikit-learn (previously known as daal4py) contains drop-in replacement functionality for the stock Scikit-learn package. You can take advantage of the performance optimizations of Intel® Extension for Scikit-learn by adding just two lines of code before the usual Scikit-learn imports:" ] }, { "cell_type": "code", "execution_count": 8, "id": "4fe10be8-83a0-4681-8ecc-6f8b09eb1e13", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Intel(R) Extension for Scikit-learn* enabled (https://github.com/uxlfoundation/scikit-learn-intelex)\n" ] } ], "source": [ "from sklearnex import patch_sklearn\n", "\n", "patch_sklearn()" ] }, { "cell_type": "code", "execution_count": 9, "id": "60c6aa9b-748b-4a02-87b1-600d1130c4d8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn time: 0.03 s'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import Ridge\n", "\n", "params = {\n", " \"alpha\": 0.3,\n", " \"fit_intercept\": False,\n", " \"random_state\": 0,\n", " \"copy_X\": False,\n", "}\n", "start = timer()\n", "model = Ridge(random_state=0).fit(x_train, y_train)\n", "train_patched = timer() - start\n", "f\"Intel® extension for Scikit-learn time: {train_patched:.2f} s\"" ] }, { "cell_type": "code", "execution_count": 10, "id": "e3b5e2bc-a5fe-4f1b-90ab-b3119ad77b4b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Patched Scikit-learn MSE: 0.6899813655698377'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_predict = model.predict(x_test)\n", "mse_metric_opt = metrics.mean_squared_error(y_test, y_predict)\n", "f\"Patched Scikit-learn MSE: {mse_metric_opt}\"" ] }, { "cell_type": "markdown", "id": "5c6010de-b52f-44af-b0f4-f76e8de128c5", "metadata": {}, "source": [ "### Train the same algorithm with original Scikit-learn\n", "In order to cancel optimizations, we use *unpatch_sklearn* and reimport the class Ridge" ] }, { "cell_type": "code", "execution_count": 11, "id": "7dbf40f4-7cb6-4ad5-a5d1-a07793780b23", "metadata": {}, "outputs": [], "source": [ "from sklearnex import unpatch_sklearn\n", "\n", "unpatch_sklearn()" ] }, { "cell_type": "code", "execution_count": 12, "id": "eb46f060-dbde-43a3-b173-6d1c02fd9b9c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn time: 0.12 s'" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import Ridge\n", "\n", "start = timer()\n", "model = Ridge(random_state=0).fit(x_train, y_train)\n", "train_unpatched = timer() - start\n", "f\"Original Scikit-learn time: {train_unpatched:.2f} s\"" ] }, { "cell_type": "code", "execution_count": 13, "id": "6f55a543-d85a-4e76-95d1-4fef83b59d7e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn MSE: 0.6899813655698382'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_predict = model.predict(x_test)\n", "mse_metric_original = metrics.mean_squared_error(y_test, y_predict)\n", "f\"Original Scikit-learn MSE: {mse_metric_original}\"" ] }, { "cell_type": "code", "execution_count": 14, "id": "aa1355e0-b70c-448b-99d8-eee19f2b1f36", "metadata": {}, "outputs": [ { "data": { "text/html": [ "