{ "cells": [ { "cell_type": "markdown", "id": "c44da9e1-d76e-4956-8c19-9dade31e2bc5", "metadata": {}, "source": [ "# Intel® Extension for Scikit-learn Ridge Regression for New York City Bike Share dataset" ] }, { "cell_type": "code", "execution_count": 1, "id": "963c5285-6470-474c-9550-6990029fa6a3", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from timeit import default_timer as timer\n", "from sklearn import metrics\n", "from sklearn.model_selection import train_test_split\n", "import warnings\n", "from sklearn.datasets import fetch_openml\n", "from sklearn.preprocessing import LabelEncoder\n", "from IPython.display import HTML\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "id": "421d17b2-a02f-464d-b196-9e46cd0bb396", "metadata": {}, "source": [ "### Download the data" ] }, { "cell_type": "code", "execution_count": 2, "id": "d0b94c65-bd7c-480e-bd56-e5adc711585f", "metadata": {}, "outputs": [], "source": [ "dataset = fetch_openml(data_id=43526, as_frame=True)" ] }, { "cell_type": "markdown", "id": "bcb6b5bc-5a76-4741-b350-518cd9c43f9c", "metadata": {}, "source": [ "### Preprocessing\n", "Let's encode categorical features with LabelEncoder" ] }, { "cell_type": "code", "execution_count": 3, "id": "a3995621-d516-470f-a8d1-78d635435bb7", "metadata": {}, "outputs": [], "source": [ "# Access the data as a DataFrame\n", "data = dataset.frame\n", "\n", "# Convert date columns to datetime\n", "data['Start_Time'] = pd.to_datetime(data['Start_Time'])\n", "data['Stop_Time'] = pd.to_datetime(data['Stop_Time'])\n", "\n", "# Extract useful features from datetime columns\n", "data['Start_Year'] = data['Start_Time'].dt.year\n", "data['Start_Month'] = data['Start_Time'].dt.month\n", "data['Start_Day'] = data['Start_Time'].dt.day\n", "data['Start_Hour'] = data['Start_Time'].dt.hour\n", "\n", "data['Stop_Year'] = data['Stop_Time'].dt.year\n", "data['Stop_Month'] = data['Stop_Time'].dt.month\n", "data['Stop_Day'] = data['Stop_Time'].dt.day\n", "data['Stop_Hour'] = data['Stop_Time'].dt.hour\n", "\n", "# Drop the original datetime columns\n", "data = data.drop(columns=['Start_Time', 'Stop_Time'])\n", "\n", "# Encode categorical variables\n", "for col in ['Start_Station_Name', 'End_Station_Name', 'Gender', 'User_Type']:\n", " le = LabelEncoder().fit(data[col])\n", " data[col] = le.transform(data[col])\n", "\n", "# Set the target variable\n", "data['target'] = data['Trip_Duration']\n", "\n", "# Separate features and target\n", "x = data.drop(columns=['target', 'Trip_Duration'])\n", "y = data['target']" ] }, { "cell_type": "code", "execution_count": 4, "id": "d21fbc59-1f27-4114-a54e-51a5263a5d31", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(661951, 22) (73551, 22) (661951,) (73551,)\n" ] } ], "source": [ "# Ensure x and y are defined and not None\n", "if x is not None and y is not None:\n", " for col in ['User_Type', 'Gender']:\n", " if col in x.columns:\n", " le = LabelEncoder().fit(x[col])\n", " x[col] = le.transform(x[col])\n", " else:\n", " print(f\"Column {col} does not exist in the DataFrame.\")\n", "\n", " # Split the data\n", " x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=0)\n", " print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)\n", "else:\n", " print(\"x or y is None. Please check your data.\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "862647f0-e3cc-486f-b40f-c9d013b2b973", "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", "\n", "scaler_x = MinMaxScaler()\n", "scaler_y = StandardScaler()" ] }, { "cell_type": "code", "execution_count": 6, "id": "7fabcc1c-1632-45bb-aa8e-cc6edd864a51", "metadata": {}, "outputs": [], "source": [ "y_train = y_train.to_numpy().reshape(-1, 1)\n", "y_test = y_test.to_numpy().reshape(-1, 1)\n", "\n", "scaler_x.fit(x_train)\n", "x_train = scaler_x.transform(x_train)\n", "x_test = scaler_x.transform(x_test)\n", "\n", "scaler_y.fit(y_train)\n", "y_train = scaler_y.transform(y_train).ravel()\n", "y_test = scaler_y.transform(y_test).ravel()" ] }, { "cell_type": "markdown", "id": "b6e77f12-027c-4519-940c-26c9b127daac", "metadata": {}, "source": [ "### Patch original Scikit-learn with Intel® Extension for Scikit-learn\n", "Intel® Extension for Scikit-learn (previously known as daal4py) contains drop-in replacement functionality for the stock Scikit-learn package. You can take advantage of the performance optimizations of Intel® Extension for Scikit-learn by adding just two lines of code before the usual Scikit-learn imports:" ] }, { "cell_type": "code", "execution_count": 7, "id": "4fe10be8-83a0-4681-8ecc-6f8b09eb1e13", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Intel(R) Extension for Scikit-learn* enabled (https://github.com/uxlfoundation/scikit-learn-intelex)\n" ] } ], "source": [ "from sklearnex import patch_sklearn\n", "\n", "patch_sklearn()" ] }, { "cell_type": "code", "execution_count": 8, "id": "60c6aa9b-748b-4a02-87b1-600d1130c4d8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn time: 0.04 s'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import Ridge\n", "\n", "params = {\n", " \"alpha\": 0.3,\n", " \"fit_intercept\": False,\n", " \"random_state\": 0,\n", " \"copy_X\": False,\n", "}\n", "start = timer()\n", "model = Ridge(random_state=0).fit(x_train, y_train)\n", "train_patched = timer() - start\n", "f\"Intel® extension for Scikit-learn time: {train_patched:.2f} s\"" ] }, { "cell_type": "code", "execution_count": 9, "id": "e3b5e2bc-a5fe-4f1b-90ab-b3119ad77b4b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Patched Scikit-learn MSE: 0.29078674972552815'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_predict = model.predict(x_test)\n", "mse_metric_opt = metrics.mean_squared_error(y_test, y_predict)\n", "f\"Patched Scikit-learn MSE: {mse_metric_opt}\"" ] }, { "cell_type": "markdown", "id": "177a3800-4ee6-421f-8cd0-149beebb460a", "metadata": {}, "source": [ "### Train the same algorithm with original Scikit-learn\n", "In order to cancel optimizations, we use *unpatch_sklearn* and reimport the class Ridge" ] }, { "cell_type": "code", "execution_count": 10, "id": "7dbf40f4-7cb6-4ad5-a5d1-a07793780b23", "metadata": {}, "outputs": [], "source": [ "from sklearnex import unpatch_sklearn\n", "\n", "unpatch_sklearn()" ] }, { "cell_type": "code", "execution_count": 11, "id": "eb46f060-dbde-43a3-b173-6d1c02fd9b9c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn time: 0.19 s'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import Ridge\n", "\n", "start = timer()\n", "model = Ridge(random_state=0).fit(x_train, y_train)\n", "train_unpatched = timer() - start\n", "f\"Original Scikit-learn time: {train_unpatched:.2f} s\"" ] }, { "cell_type": "code", "execution_count": 12, "id": "6f55a543-d85a-4e76-95d1-4fef83b59d7e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn MSE: 0.29078674972650354'" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_predict = model.predict(x_test)\n", "mse_metric_original = metrics.mean_squared_error(y_test, y_predict)\n", "f\"Original Scikit-learn MSE: {mse_metric_original}\"" ] }, { "cell_type": "code", "execution_count": 13, "id": "aa1355e0-b70c-448b-99d8-eee19f2b1f36", "metadata": {}, "outputs": [ { "data": { "text/html": [ "

Compare MSE metric of patched Scikit-learn and original

MSE metric of patched Scikit-learn: 0.29078674972552815
MSE metric of unpatched Scikit-learn: 0.29078674972650354
Metrics ratio: 0.9999999999966457

With Scikit-learn-intelex patching you can:

" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML(\n", " f\"

Compare MSE metric of patched Scikit-learn and original

\"\n", " f\"MSE metric of patched Scikit-learn: {mse_metric_opt}
\"\n", " f\"MSE metric of unpatched Scikit-learn: {mse_metric_original}
\"\n", " f\"Metrics ratio: {mse_metric_opt/mse_metric_original}
\"\n", " f\"

With Scikit-learn-intelex patching you can:

\"\n", " f\"\"\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 5 }