{ "cells": [ { "cell_type": "markdown", "id": "f5c4abc0", "metadata": {}, "source": [ "# Intel® Extension for Scikit-learn NuSVR for Medical Charges dataset" ] }, { "cell_type": "code", "execution_count": 1, "id": "27b99b44", "metadata": {}, "outputs": [], "source": [ "from timeit import default_timer as timer\n", "from sklearn.datasets import fetch_openml\n", "from sklearn.model_selection import train_test_split\n", "from IPython.display import HTML\n", "import warnings\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "id": "adf9ffe9", "metadata": {}, "source": [ "### Download the data" ] }, { "cell_type": "code", "execution_count": 2, "id": "a9b315cc", "metadata": {}, "outputs": [], "source": [ "x, y = fetch_openml(name=\"medical_charges_nominal\", return_X_y=True)" ] }, { "cell_type": "markdown", "id": "49fbf604", "metadata": {}, "source": [ "### Preprocessing" ] }, { "cell_type": "markdown", "id": "fafea10b", "metadata": {}, "source": [ "Encode categorical features" ] }, { "cell_type": "code", "execution_count": 3, "id": "f77c30f2", "metadata": {}, "outputs": [], "source": [ "cat_columns = x.select_dtypes([\"category\"]).columns\n", "x[cat_columns] = x[cat_columns].apply(lambda x: x.cat.codes)" ] }, { "cell_type": "markdown", "id": "cd8d3b6d", "metadata": {}, "source": [ "Split the data into train and test sets" ] }, { "cell_type": "code", "execution_count": 4, "id": "96e14dd7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((48919, 11), (114146, 11), (48919,), (114146,))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.3, random_state=42)\n", "x_train.shape, x_test.shape, y_train.shape, y_test.shape" ] }, { "cell_type": "markdown", "id": "0341cac9", "metadata": {}, "source": [ "### Patch original Scikit-learn with Intel® Extension for Scikit-learn\n", "Intel® Extension for Scikit-learn (previously known as daal4py) contains drop-in replacement functionality for the stock Scikit-learn package. You can take advantage of the performance optimizations of Intel® Extension for Scikit-learn by adding just two lines of code before the usual Scikit-learn imports:" ] }, { "cell_type": "code", "execution_count": 5, "id": "244c5bc9", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Intel(R) Extension for Scikit-learn* enabled (https://github.com/uxlfoundation/scikit-learn-intelex)\n" ] } ], "source": [ "from sklearnex import patch_sklearn\n", "\n", "patch_sklearn()" ] }, { "cell_type": "markdown", "id": "6bb14ac8", "metadata": {}, "source": [ "Intel® Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://uxlfoundation.github.io/scikit-learn-intelex/latest/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/uxlfoundation/scikit-learn-intelex/issues)." ] }, { "cell_type": "markdown", "id": "693b4e26", "metadata": {}, "source": [ "Training of the NuSVR algorithm with Intel® Extension for Scikit-learn for Medical Charges dataset" ] }, { "cell_type": "code", "execution_count": 6, "id": "e9b8f06b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn time: 24.69 s'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.svm import NuSVR\n", "\n", "params = {\n", " \"nu\": 0.4,\n", " \"C\": y_train.mean(),\n", " \"degree\": 2,\n", " \"kernel\": \"poly\",\n", "}\n", "start = timer()\n", "nusvr = NuSVR(**params).fit(x_train, y_train)\n", "train_patched = timer() - start\n", "f\"Intel® extension for Scikit-learn time: {train_patched:.2f} s\"" ] }, { "cell_type": "markdown", "id": "d01cdabc", "metadata": {}, "source": [ "Predict and get a result of the NuSVR algorithm with Intel® Extension for Scikit-learn" ] }, { "cell_type": "code", "execution_count": 7, "id": "9ead2a44", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn R2 score: 0.8635974264586637'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "score_opt = nusvr.score(x_test, y_test)\n", "f\"Intel® extension for Scikit-learn R2 score: {score_opt}\"" ] }, { "cell_type": "markdown", "id": "bd8e7b0b", "metadata": {}, "source": [ "### Train the same algorithm with original Scikit-learn\n", "In order to cancel optimizations, we use *unpatch_sklearn* and reimport the class NuSVR" ] }, { "cell_type": "code", "execution_count": 8, "id": "5bb884d5", "metadata": {}, "outputs": [], "source": [ "from sklearnex import unpatch_sklearn\n", "\n", "unpatch_sklearn()" ] }, { "cell_type": "markdown", "id": "8cfa0dba", "metadata": {}, "source": [ "Training of the NuSVR algorithm with original Scikit-learn library for Medical Charges dataset" ] }, { "cell_type": "code", "execution_count": 9, "id": "ae421d8e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn time: 331.85 s'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.svm import NuSVR\n", "\n", "start = timer()\n", "nusvr = NuSVR(**params).fit(x_train, y_train)\n", "train_unpatched = timer() - start\n", "f\"Original Scikit-learn time: {train_unpatched:.2f} s\"" ] }, { "cell_type": "markdown", "id": "23b8faa6", "metadata": {}, "source": [ "Predict and get a result of the NuSVR algorithm with original Scikit-learn" ] }, { "cell_type": "code", "execution_count": 10, "id": "7644999d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn R2 score: 0.8636031741516902'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "score_original = nusvr.score(x_test, y_test)\n", "f\"Original Scikit-learn R2 score: {score_original}\"" ] }, { "cell_type": "code", "execution_count": 11, "id": "3a704d51", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<h3>Compare R2 score of patched Scikit-learn and original</h3>R2 score of patched Scikit-learn: 0.8635974264586637 <br>R2 score of unpatched Scikit-learn: 0.8636031741516902 <br>Metrics ratio: 0.999993344520726 <br><h3>With Scikit-learn-intelex patching you can:</h3><ul><li>Use your Scikit-learn code for training and prediction with minimal changes (a couple of lines of code);</li><li>Fast execution training and prediction of Scikit-learn models;</li><li>Get the similar quality</li><li>Get speedup in <strong>13.4</strong> times.</li></ul>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML(\n", " f\"<h3>Compare R2 score of patched Scikit-learn and original</h3>\"\n", " f\"R2 score of patched Scikit-learn: {score_opt} <br>\"\n", " f\"R2 score of unpatched Scikit-learn: {score_original} <br>\"\n", " f\"Metrics ratio: {score_opt/score_original} <br>\"\n", " f\"<h3>With Scikit-learn-intelex patching you can:</h3>\"\n", " f\"<ul>\"\n", " f\"<li>Use your Scikit-learn code for training and prediction with minimal changes (a couple of lines of code);</li>\"\n", " f\"<li>Fast execution training and prediction of Scikit-learn models;</li>\"\n", " f\"<li>Get the similar quality</li>\"\n", " f\"<li>Get speedup in <strong>{(train_unpatched/train_patched):.1f}</strong> times.</li>\"\n", " f\"</ul>\"\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }