{ "cells": [ { "cell_type": "markdown", "id": "3768ec43", "metadata": {}, "source": [ "# Intel® Extension for Scikit-learn Kmeans for spoken arabic digit dataset" ] }, { "cell_type": "code", "execution_count": 1, "id": "b1b922d1", "metadata": {}, "outputs": [], "source": [ "from timeit import default_timer as timer\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.datasets import fetch_openml\n", "from IPython.display import HTML\n", "import warnings\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "id": "be391256", "metadata": {}, "source": [ "### Download the data" ] }, { "cell_type": "code", "execution_count": 2, "id": "7e73dc65", "metadata": {}, "outputs": [], "source": [ "x, y = fetch_openml(name=\"spoken-arabic-digit\", return_X_y=True)" ] }, { "cell_type": "markdown", "id": "0cdcb77d", "metadata": {}, "source": [ "### Preprocessing\n", "Split the data into train and test sets" ] }, { "cell_type": "code", "execution_count": 3, "id": "0d332789", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((236930, 14), (26326, 14), (236930,), (26326,))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=123)\n", "x_train.shape, x_test.shape, y_train.shape, y_test.shape" ] }, { "cell_type": "markdown", "id": "246f819f", "metadata": {}, "source": [ "Normalize the data" ] }, { "cell_type": "code", "execution_count": 4, "id": "454a341c", "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import MinMaxScaler\n", "\n", "scaler_x = MinMaxScaler()" ] }, { "cell_type": "code", "execution_count": 5, "id": "02a779e9", "metadata": {}, "outputs": [], "source": [ "scaler_x.fit(x_train)\n", "x_train = scaler_x.transform(x_train)\n", "x_test = scaler_x.transform(x_test)" ] }, { "cell_type": "markdown", "id": "fe1d4fac", "metadata": {}, "source": [ "### Patch original Scikit-learn with Intel® Extension for Scikit-learn\n", "Intel® Extension for Scikit-learn (previously known as daal4py) contains drop-in replacement functionality for the stock Scikit-learn package. You can take advantage of the performance optimizations of Intel® Extension for Scikit-learn by adding just two lines of code before the usual Scikit-learn imports:" ] }, { "cell_type": "code", "execution_count": 6, "id": "ef6938df", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Intel(R) Extension for Scikit-learn* enabled (https://github.com/uxlfoundation/scikit-learn-intelex)\n" ] } ], "source": [ "from sklearnex import patch_sklearn\n", "\n", "patch_sklearn()" ] }, { "cell_type": "markdown", "id": "20c5ab48", "metadata": {}, "source": [ "Intel® Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://uxlfoundation.github.io/scikit-learn-intelex/latest/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/uxlfoundation/scikit-learn-intelex/issues)." ] }, { "cell_type": "markdown", "id": "f80273e7", "metadata": {}, "source": [ "Training of the KMeans algorithm with Intel® Extension for Scikit-learn for spoken arabic digit dataset" ] }, { "cell_type": "code", "execution_count": 7, "id": "1ffc93c7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn time: 7.36 s'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.cluster import KMeans\n", "\n", "params = {\n", " \"n_clusters\": 128,\n", " \"random_state\": 123,\n", " \"copy_x\": False,\n", "}\n", "start = timer()\n", "model = KMeans(**params).fit(x_train, y_train)\n", "train_patched = timer() - start\n", "f\"Intel® extension for Scikit-learn time: {train_patched:.2f} s\"" ] }, { "cell_type": "markdown", "id": "f10b51fc", "metadata": {}, "source": [ "Let's take a look at inertia and number of iterations of the KMeans algorithm with Intel® Extension for Scikit-learn" ] }, { "cell_type": "code", "execution_count": 8, "id": "d4295a26", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intel® extension for Scikit-learn inertia: 13346.641333761074\n", "Intel® extension for Scikit-learn number of iterations: 274\n" ] } ], "source": [ "inertia_opt = model.inertia_\n", "n_iter_opt = model.n_iter_\n", "print(f\"Intel® extension for Scikit-learn inertia: {inertia_opt}\")\n", "print(f\"Intel® extension for Scikit-learn number of iterations: {n_iter_opt}\")" ] }, { "cell_type": "markdown", "id": "cbe6db0d", "metadata": {}, "source": [ "### Train the same algorithm with original Scikit-learn\n", "In order to cancel optimizations, we use *unpatch_sklearn* and reimport the class KMeans" ] }, { "cell_type": "code", "execution_count": 9, "id": "6f64ba97", "metadata": {}, "outputs": [], "source": [ "from sklearnex import unpatch_sklearn\n", "\n", "unpatch_sklearn()" ] }, { "cell_type": "markdown", "id": "f242c6da", "metadata": {}, "source": [ "Training of the KMeans algorithm with original Scikit-learn library for spoken arabic digit dataset" ] }, { "cell_type": "code", "execution_count": 10, "id": "67243849", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn time: 192.14 s'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.cluster import KMeans\n", "\n", "start = timer()\n", "model = KMeans(**params).fit(x_train, y_train)\n", "train_unpatched = timer() - start\n", "f\"Original Scikit-learn time: {train_unpatched:.2f} s\"" ] }, { "cell_type": "markdown", "id": "c85a125c", "metadata": {}, "source": [ "Let's take a look at inertia and number of iterations of the KMeans algorithm with original Scikit-learn" ] }, { "cell_type": "code", "execution_count": 11, "id": "cd9e726c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original Scikit-learn inertia: 13352.813785961785\n", "Original Scikit-learn number of iterations: 212\n" ] } ], "source": [ "inertia_original = model.inertia_\n", "n_iter_original = model.n_iter_\n", "print(f\"Original Scikit-learn inertia: {inertia_original}\")\n", "print(f\"Original Scikit-learn number of iterations: {n_iter_original}\")" ] }, { "cell_type": "code", "execution_count": 12, "id": "3639eef9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<h3>Compare inertia and number of iterations of patched Scikit-learn and original</h3><br><strong>Inertia:</strong><br>Patched Scikit-learn: 13346.641333761074 <br>Unpatched Scikit-learn: 13352.813785961785 <br>Ratio: 0.9995377414603653 <br><br><strong>Number of iterations:</strong><br>Patched Scikit-learn: 274 <br>Unpatched Scikit-learn: 212 <br>Ratio: 1.29 <br><br>Number of iterations is bigger but algorithm is much faster and inertia is lower<h3>With Scikit-learn-intelex patching you can:</h3><ul><li>Use your Scikit-learn code for training and prediction with minimal changes (a couple of lines of code);</li><li>Fast execution training and prediction of Scikit-learn models;</li><li>Get speedup in <strong>26.1</strong> times.</li></ul>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML(\n", " f\"<h3>Compare inertia and number of iterations of patched Scikit-learn and original</h3><br>\"\n", " f\"<strong>Inertia:</strong><br>\"\n", " f\"Patched Scikit-learn: {inertia_opt} <br>\"\n", " f\"Unpatched Scikit-learn: {inertia_original} <br>\"\n", " f\"Ratio: {inertia_opt/inertia_original} <br><br>\"\n", " f\"<strong>Number of iterations:</strong><br>\"\n", " f\"Patched Scikit-learn: {n_iter_opt} <br>\"\n", " f\"Unpatched Scikit-learn: {n_iter_original} <br>\"\n", " f\"Ratio: {(n_iter_opt/n_iter_original):.2f} <br><br>\"\n", " f\"Number of iterations is bigger but algorithm is much faster and inertia is lower\"\n", " f\"<h3>With Scikit-learn-intelex patching you can:</h3>\"\n", " f\"<ul>\"\n", " f\"<li>Use your Scikit-learn code for training and prediction with minimal changes (a couple of lines of code);</li>\"\n", " f\"<li>Fast execution training and prediction of Scikit-learn models;</li>\"\n", " f\"<li>Get speedup in <strong>{(train_unpatched/train_patched):.1f}</strong> times.</li>\"\n", " f\"</ul>\"\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }