{ "cells": [ { "cell_type": "markdown", "id": "3768ec43", "metadata": {}, "source": [ "# Intel® Extension for Scikit-learn DBSCAN for spoken arabic digit dataset" ] }, { "cell_type": "code", "execution_count": 1, "id": "b1b922d1", "metadata": {}, "outputs": [], "source": [ "from timeit import default_timer as timer\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import davies_bouldin_score\n", "from sklearn.datasets import fetch_openml\n", "from IPython.display import HTML\n", "import warnings\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "id": "be391256", "metadata": {}, "source": [ "### Download the data" ] }, { "cell_type": "code", "execution_count": 2, "id": "7e73dc65", "metadata": {}, "outputs": [], "source": [ "x, y = fetch_openml(name=\"spoken-arabic-digit\", return_X_y=True)" ] }, { "cell_type": "markdown", "id": "246f819f", "metadata": {}, "source": [ "### Preprocessing\n", "Split the data into train and test sets" ] }, { "cell_type": "code", "execution_count": 3, "id": "6fd95eeb", "metadata": {}, "outputs": [], "source": [ "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)" ] }, { "cell_type": "markdown", "id": "33da61da", "metadata": {}, "source": [ "Normalize the data" ] }, { "cell_type": "code", "execution_count": 4, "id": "454a341c", "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import MinMaxScaler\n", "\n", "scaler_x = MinMaxScaler()" ] }, { "cell_type": "code", "execution_count": 5, "id": "02a779e9", "metadata": {}, "outputs": [], "source": [ "scaler_x.fit(x_train)\n", "x_train = scaler_x.transform(x_train)\n", "x_test = scaler_x.transform(x_test)" ] }, { "cell_type": "markdown", "id": "fe1d4fac", "metadata": {}, "source": [ "### Patch original Scikit-learn with Intel® Extension for Scikit-learn\n", "Intel® Extension for Scikit-learn (previously known as daal4py) contains drop-in replacement functionality for the stock Scikit-learn package. You can take advantage of the performance optimizations of Intel® Extension for Scikit-learn by adding just two lines of code before the usual Scikit-learn imports:" ] }, { "cell_type": "code", "execution_count": 6, "id": "ef6938df", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Intel(R) Extension for Scikit-learn* enabled (https://github.com/uxlfoundation/scikit-learn-intelex)\n" ] } ], "source": [ "from sklearnex import patch_sklearn\n", "\n", "patch_sklearn()" ] }, { "cell_type": "markdown", "id": "20c5ab48", "metadata": {}, "source": [ "Intel® Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://uxlfoundation.github.io/scikit-learn-intelex/latest/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/uxlfoundation/scikit-learn-intelex/issues)." ] }, { "cell_type": "markdown", "id": "f80273e7", "metadata": {}, "source": [ "Training of the DBSCAN algorithm with Intel® Extension for Scikit-learn for spoken arabic digit dataset" ] }, { "cell_type": "code", "execution_count": 7, "id": "1ffc93c7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn time: 6.37 s'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.cluster import DBSCAN\n", "\n", "params = {\n", " \"n_jobs\": -1,\n", "}\n", "start = timer()\n", "y_pred = DBSCAN(**params).fit_predict(x_train)\n", "train_patched = timer() - start\n", "f\"Intel® extension for Scikit-learn time: {train_patched:.2f} s\"" ] }, { "cell_type": "markdown", "id": "f10b51fc", "metadata": {}, "source": [ "Let's take a look at Davies-Bouldin score of the DBSCAN algorithm with Intel® Extension for Scikit-learn" ] }, { "cell_type": "code", "execution_count": 8, "id": "d4295a26", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Intel® extension for Scikit-learn Davies-Bouldin score: 0.8542652084275848'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "score_opt = davies_bouldin_score(x_train, y_pred)\n", "f\"Intel® extension for Scikit-learn Davies-Bouldin score: {score_opt}\"" ] }, { "cell_type": "markdown", "id": "cbe6db0d", "metadata": {}, "source": [ "### Train the same algorithm with original Scikit-learn\n", "In order to cancel optimizations, we use *unpatch_sklearn* and reimport the class DBSCAN" ] }, { "cell_type": "code", "execution_count": 9, "id": "6f64ba97", "metadata": {}, "outputs": [], "source": [ "from sklearnex import unpatch_sklearn\n", "\n", "unpatch_sklearn()" ] }, { "cell_type": "markdown", "id": "f242c6da", "metadata": {}, "source": [ "Training of the DBSCAN algorithm with original Scikit-learn library for spoken arabic digit dataset" ] }, { "cell_type": "code", "execution_count": 10, "id": "67243849", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn time: 469.21 s'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.cluster import DBSCAN\n", "\n", "start = timer()\n", "y_pred = DBSCAN(**params).fit_predict(x_train)\n", "train_unpatched = timer() - start\n", "f\"Original Scikit-learn time: {train_unpatched:.2f} s\"" ] }, { "cell_type": "markdown", "id": "c85a125c", "metadata": {}, "source": [ "Let's take a look Davies-Bouldin score of the DBSCAN algorithm with original Scikit-learn" ] }, { "cell_type": "code", "execution_count": 11, "id": "cd9e726c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Original Scikit-learn Davies-Bouldin score: 0.8542652084275848'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "score_original = davies_bouldin_score(x_train, y_pred)\n", "f\"Original Scikit-learn Davies-Bouldin score: {score_opt}\"" ] }, { "cell_type": "code", "execution_count": 12, "id": "3639eef9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "