.. Copyright 2021 Intel Corporation .. .. Licensed under the Apache License, Version 2.0 (the "License"); .. you may not use this file except in compliance with the License. .. You may obtain a copy of the License at .. .. http://www.apache.org/licenses/LICENSE-2.0 .. .. Unless required by applicable law or agreed to in writing, software .. distributed under the License is distributed on an "AS IS" BASIS, .. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. See the License for the specific language governing permissions and .. limitations under the License. .. |automl_with_intelex_jun| replace:: AutoML MultiClass Classification (Gradient Boosting, Random Forest, kNN) using AutoGluon with |intelex| .. _automl_with_intelex_jun: https://www.kaggle.com/alex97andreev/tps-jun-autogluon-with-sklearnex .. |automl_with_intelex_tps_oct| replace:: AutoML Binary Classification (Gradient Boosting, Random Forest) using AutoGluon with |intelex| .. _automl_with_intelex_tps_oct: https://www.kaggle.com/lordozvlad/fast-automl-with-intel-extension-for-scikit-learn/notebook .. |automl_with_intelex_tps_nov| replace:: AutoML Binary Classification (Gradient Boosting, Random Forest, kNN) using EvalML and AutoGluon with |intelex| .. _automl_with_intelex_tps_nov: https://www.kaggle.com/lordozvlad/tps-nov-automl-with-intel-extension .. |automl_with_intelex_titanic| replace:: AutoML Binary Classification (Gradient Boosting, Random Forest, kNN) using AutoGluon with |intelex| .. _automl_with_intelex_titanic: https://www.kaggle.com/lordozvlad/titanic-automl-with-intel-extension-for-sklearn/notebook .. |automl_with_intelex_tps_jan| replace:: AutoML Binary Classification (Random Forest, SVR, Blending) using PyCaret with |intelex| .. _automl_with_intelex_tps_jan: https://www.kaggle.com/code/lordozvlad/tps-jan-fast-pycaret-with-scikit-learn-intelex/notebook Kaggle Kernels that use AutoML and |intelex| -------------------------------------------- The following Kaggle kernels show how to patch autoML frameworks with |intelex|. .. include:: /kaggle/note-about-tps.rst .. list-table:: :header-rows: 1 :align: left :widths: 40 20 * - Kernel - Goal * - |automl_with_intelex_jun|_ **Data:** [TPS Jun 2021] Synthetic eCommerce data - Predict the category of an eCommerce product * - |automl_with_intelex_titanic|_ **Data:** Titanic datset - Predict whether a passenger survivies * - |automl_with_intelex_tps_oct|_ **Data:** [TPS Oct 2021] Synthetic molecular response data - Predict the biological response of molecules given various chemical properties * - |automl_with_intelex_tps_nov|_ **Data:** [TPS Nov 2021] Synthetic spam emails data - Identify spam emails via features extracted from the email * - |automl_with_intelex_tps_jan|_ **Data:** [TPS Jan 2022] Fictional Sales data - Predict the corresponding item sales for each date-country-store-item combination