.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ .. |intelex_repo| replace:: |intelex| repository .. _intelex_repo: https://github.com/intel/scikit-learn-intelex .. _index: ######### |intelex| ######### Intel(R) Extension for Scikit-learn is a **free software AI accelerator** designed to deliver up to **100X** faster performance for your existing scikit-learn code. The software acceleration is achieved with vector instructions, AI hardware-specific memory optimizations, threading, and optimizations for all upcoming Intel(R) platforms at launch time. .. rubric:: Designed for Data Scientists and Framework Designers Use Intel(R) Extension for Scikit-learn, to: * Speed up training and inference by up to 100x with the equivalent mathematical accuracy * Benefit from performance improvements across different x86-compatible CPUs or Intel(R) GPUs * Integrate the extension into your existing Scikit-learn applications without code modifications * Enable and disable the extension with a couple of lines of code or at the command line Intel(R) Extension for Scikit-learn is also a part of `Intel(R) AI Tools `_. .. image:: _static/scikit-learn-acceleration.PNG :width: 800 These performance charts use benchmarks that you can find in the `scikit-learn bench repository `_. Supported Algorithms --------------------- See all of the :ref:`sklearn_algorithms`. Intel(R) Optimizations ---------------------------------- Enable Intel(R) CPU Optimizations ********************************* :: import numpy as np from sklearnex import patch_sklearn patch_sklearn() from sklearn.cluster import DBSCAN X = np.array([[1., 2.], [2., 2.], [2., 3.], [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32) clustering = DBSCAN(eps=3, min_samples=2).fit(X) Enable Intel(R) GPU optimizations ********************************* :: import numpy as np import dpctl from sklearnex import patch_sklearn, config_context patch_sklearn() from sklearn.cluster import DBSCAN X = np.array([[1., 2.], [2., 2.], [2., 3.], [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32) with config_context(target_offload="gpu:0"): clustering = DBSCAN(eps=3, min_samples=2).fit(X) .. toctree:: :caption: Get Started :hidden: :maxdepth: 3 quick-start.rst samples.rst kaggle.rst .. toctree:: :caption: Developer Guide :hidden: :maxdepth: 2 algorithms.rst oneAPI and GPU support distributed-mode.rst verbose.rst deprecation.rst .. toctree:: :caption: Performance :hidden: :maxdepth: 2 guide/acceleration.rst .. toctree:: :caption: Learn :hidden: :maxdepth: 2 Tutorials & Case Studies Medium Blogs .. toctree:: :caption: More :hidden: :maxdepth: 2 Support contribute.rst license.rst