.. index:: pair: page; Linear-Before-Reset GRU RNN Primitive Example .. _doxid-lbr_gru_example_cpp: Linear-Before-Reset GRU RNN Primitive Example ============================================= This C++ API example demonstrates how to create and execute a :ref:`Linear-Before-Reset GRU RNN ` primitive in forward training propagation mode. Key optimizations included in this example: * Creation of optimized memory format from the primitive descriptor. .. ref-code-block:: cpp /******************************************************************************* * Copyright 2024-2025 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include #include #include #include #include "dnnl.hpp" #include "example_utils.hpp" using namespace :ref:`dnnl `; void lbr_gru_example(:ref:`dnnl::engine::kind ` engine_kind) { // Create execution dnnl::engine. :ref:`dnnl::engine ` :ref:`engine `(engine_kind, 0); // Create dnnl::stream. :ref:`dnnl::stream ` engine_stream(:ref:`engine `); // Tensor dimensions. const :ref:`memory::dim ` N = 2, // batch size T = 3, // time steps IC = 2, // src channels OC = 3, // dst channels G = 3, // gates L = 1, // layers D = 1, // directions E = 1; // extra Bias number. Extra Bias for u' gate // Source (src), weights, bias, attention, and destination (dst) tensors // dimensions. :ref:`memory::dims ` src_dims = {T, N, IC}; :ref:`memory::dims ` weights_layer_dims = {L, D, IC, G, OC}; :ref:`memory::dims ` weights_iter_dims = {L, D, OC, G, OC}; :ref:`memory::dims ` bias_dims = {L, D, G + E, OC}; :ref:`memory::dims ` dst_layer_dims = {T, N, OC}; :ref:`memory::dims ` dst_iter_dims = {L, D, N, OC}; // Allocate buffers. std::vector src_layer_data(product(src_dims)); std::vector weights_layer_data(product(weights_layer_dims)); std::vector weights_iter_data(product(weights_iter_dims)); std::vector bias_data(product(bias_dims)); std::vector dst_layer_data(product(dst_layer_dims)); std::vector dst_iter_data(product(dst_iter_dims)); // Initialize src, weights, and bias tensors. std::generate(src_layer_data.begin(), src_layer_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(weights_iter_data.begin(), weights_iter_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(bias_data.begin(), bias_data.end(), []() { static int i = 0; return std::tanh(float(i++)); }); // Create memory descriptors and memory objects for src, bias, and dst. auto src_layer_md = :ref:`memory::desc `( src_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::tnc `); auto bias_md = :ref:`memory::desc `( bias_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::ldgo `); auto dst_layer_md = :ref:`memory::desc `( dst_layer_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::tnc `); auto src_layer_mem = :ref:`memory `(src_layer_md, :ref:`engine `); auto bias_mem = :ref:`memory `(bias_md, :ref:`engine `); auto dst_layer_mem = :ref:`memory `(dst_layer_md, :ref:`engine `); // Create memory objects for weights using user's memory layout. In this // example, LDIGO (num_layers, num_directions, input_channels, num_gates, // output_channels) is assumed. auto user_weights_layer_mem = :ref:`memory `({weights_layer_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::ldigo `}, :ref:`engine `); auto user_weights_iter_mem = :ref:`memory `({weights_iter_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::ldigo `}, :ref:`engine `); // Write data to memory object's handle. // For GRU cells, the gates order is update, reset and output // gate except the bias. For the bias tensor, the gates order is // u, r, o and u' gate. write_to_dnnl_memory(src_layer_data.data(), src_layer_mem); write_to_dnnl_memory(bias_data.data(), bias_mem); write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem); write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem); // Create memory descriptors for weights with format_tag::any. This enables // the lbr_gru primitive to choose the optimized memory layout. auto weights_layer_md = :ref:`memory::desc `(weights_layer_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::any `); auto weights_iter_md = :ref:`memory::desc `( weights_iter_dims, :ref:`memory::data_type::f32 `, :ref:`memory::format_tag::any `); // Optional memory descriptors for recurrent data. // Default memory descriptor for initial hidden states of the GRU cells auto src_iter_md = :ref:`memory::desc `(); auto dst_iter_md = :ref:`memory::desc `(); // Create primitive descriptor. auto lbr_gru_pd = :ref:`lbr_gru_forward::primitive_desc `(:ref:`engine `, :ref:`prop_kind::forward_training `, :ref:`rnn_direction::unidirectional_left2right `, src_layer_md, src_iter_md, weights_layer_md, weights_iter_md, bias_md, dst_layer_md, dst_iter_md); // For now, assume that the weights memory layout generated by the primitive // and the ones provided by the user are identical. auto weights_layer_mem = user_weights_layer_mem; auto weights_iter_mem = user_weights_iter_mem; // Reorder the data in case the weights memory layout generated by the // primitive and the one provided by the user are different. In this case, // we create additional memory objects with internal buffers that will // contain the reordered data. if (lbr_gru_pd.weights_desc() != user_weights_layer_mem.get_desc()) { weights_layer_mem = :ref:`memory `(lbr_gru_pd.weights_desc(), :ref:`engine `); :ref:`reorder `(user_weights_layer_mem, weights_layer_mem) .:ref:`execute `(engine_stream, user_weights_layer_mem, weights_layer_mem); } if (lbr_gru_pd.weights_iter_desc() != user_weights_iter_mem.:ref:`get_desc `()) { weights_iter_mem = :ref:`memory `(lbr_gru_pd.weights_iter_desc(), :ref:`engine `); :ref:`reorder `(user_weights_iter_mem, weights_iter_mem) .:ref:`execute `( engine_stream, user_weights_iter_mem, weights_iter_mem); } // Create the memory objects from the primitive descriptor. A workspace is // also required for Linear-Before-Reset GRU RNN. // NOTE: Here, the workspace is required for later usage in backward // propagation mode. auto src_iter_mem = :ref:`memory `(lbr_gru_pd.src_iter_desc(), :ref:`engine `); auto dst_iter_mem = :ref:`memory `(lbr_gru_pd.dst_iter_desc(), :ref:`engine `); auto workspace_mem = :ref:`memory `(lbr_gru_pd.workspace_desc(), :ref:`engine `); // Create the primitive. auto lbr_gru_prim = :ref:`lbr_gru_forward `(lbr_gru_pd); // Primitive arguments std::unordered_map lbr_gru_args; lbr_gru_args.insert({:ref:`DNNL_ARG_SRC_LAYER `, src_layer_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_WEIGHTS_LAYER `, weights_layer_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_WEIGHTS_ITER `, weights_iter_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_BIAS `, bias_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_DST_LAYER `, dst_layer_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_SRC_ITER `, src_iter_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_DST_ITER `, dst_iter_mem}); lbr_gru_args.insert({:ref:`DNNL_ARG_WORKSPACE `, workspace_mem}); // Primitive execution: lbr_gru. lbr_gru_prim.execute(engine_stream, lbr_gru_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem); } int main(int argc, char **argv) { return handle_example_errors( lbr_gru_example, parse_engine_kind(argc, argv)); }