.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ Quantile ======== Quantile is an algorithm to analyze the distribution of observations. Quantiles are the values that divide the distribution so that a given portion of observations is below the quantile. Details ******* Given a set :math:`X` of :math:`p` features :math:`x_1 = (x_{11}, \ldots, x_{1p}), \ldots x_n = (x_{n1}, \ldots, x_{np})` and the quantile orders :math:`\beta = \beta_1, \ldots, \beta_m`, the problem is to compute :math:`z_{ik}` that meets the following conditions: .. math:: P\{ \xi_i \leq z_{ik} \} \geq \beta_k .. math:: P\{\xi_i > z_{ik} \} \leq 1 - \beta_k In the equations above: - :math:`x_i = (x_{1i}, \ldots, x_{ni})` are observations of a random variable :math:`\xi_i` that represents the :math:`i`-th feature - :math:`P` is the probability measure - :math:`i = 1, \ldots, p` - :math:`k = 1, \ldots, m` Batch Processing **************** Algorithm Input --------------- The quantile algorithm accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Input for Quantile (Batch Processing) :widths: 10 60 :header-rows: 1 * - Input ID - Input * - ``data`` - Pointer to the :math:`n \times p` numeric table that contains the input data set. This table can be an object of any class derived from ``NumericTable``. Algorithm Parameters -------------------- The quantile algorithm has the following parameters: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}| .. list-table:: Algorithm Parameters for Quantile (Batch Processing) :header-rows: 1 :align: left :class: longtable * - Parameter - Default Value - Description * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``defaultDense`` - Performance-oriented computation method, the only method supported by the algorithm. * - ``quantileOrders`` - :math:`0.5` - The :math:`1 \times m` numeric table with quantile orders. Algorithm Output ---------------- The quantile algorithm calculates the result described below. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Output for Quantile (Batch Processing) :widths: 10 60 :header-rows: 1 * - Result ID - Result * - ``quantiles`` - Pointer to the :math:`p \times m` numeric table with the quantiles. By default, this result is an object of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. Examples ******** .. tabs:: .. tab:: C++ (CPU) Batch Processing: - :cpp_example:`quantiles_dense_batch.cpp ` .. tab:: Python* Batch Processing: - :daal4py_example:`quantiles.py`