.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ Online Processing ***************** .. note:: Online processing mode for Principal Component Analysis is not available on GPU. Online processing computation mode assumes that data arrives in blocks :math:`i = 1, 2, 3, \ldots, \mathrm{nblocks}`. PCA computation in the online processing mode follows the general computation schema for online processing described in :ref:`algorithms`. Algorithm Input --------------- The PCA algorithm in the online processing mode accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Input for Principal Component Analysis (Online Processing) :widths: 10 60 :header-rows: 1 * - Input ID - Input * - ``data`` - Pointer to the :math:`n_i \times p` numeric table that represents the current data block. The input can be an object of any class derived from ``NumericTable``. Algorithm Parameters -------------------- The PCA algorithm in the online processing mode has the following parameters, depending on the computation method parameter method: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.15}|\Y{0.55}| .. list-table:: Algorithm Parameters for Principal Component Analysis (Online Processing) :widths: 10 10 10 30 :header-rows: 1 :align: left :class: longtable * - Parameter - Method - Default Value - Description * - ``algorithmFPType`` - ``defaultDense`` or ``svdDense`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - Not applicable - ``defaultDense`` - Available computation methods for PCA computation: - ``defaultDense`` - the correlation method - ``svdDense`` - the SVD method * - ``initializationProcedure`` - ``defaultDense`` or ``svdDense`` - Not applicable - The procedure for setting initial parameters of the algorithm in the online processing mode. - By default, the algorithm with the ``defaultDense`` method initializes ``nObservationsCorrelation``, ``sumCorrelation``, and ``crossProductCorrelation`` with zeros. - By default, the algorithm with the ``svdDense`` method initializes ``nObservationsSVD``, ``sumSVD``, and ``sumSquaresSVD`` with zeros. * - ``covariance`` - ``defaultDense`` - `SharedPtr >` - The correlation and variance-covariance matrices algorithm to be used for PCA computations with the correlation method. For details, see :ref:`Correlation and Variance-covariance Matrices. Online Processing `. Partial Results --------------- The PCA algorithm in the online processing mode calculates partial results described below. They depend on the computation method. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. For more details, see :ref:`algorithms`. .. tabs:: .. tab:: Correlation method (``defaultDense``) .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Partial Results for Principal Component Analysis using Correlation method (Online Processing) :widths: 10 60 :header-rows: 1 :class: longtable * - Result ID - Result * - ``nObservationsCorrelation`` - Pointer to the :math:`1 \times 1` numeric table with the number of observations processed so far. .. note:: By default, this result is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``CSRNumericTable``. * - ``crossProductCorrelation`` - Pointer to the :math:`p \times p` numeric table with the partial cross-product matrix computed so far. .. note:: By default, this table is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. * - ``sumCorrelation`` - Pointer to the :math:`1 \times p` numeric table with partial sums computed so far. .. note:: By default, this table is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. .. tab:: SVD method (``svdDense``) .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Partial Results for Principal Component Analysis using SVD method (Online Processing) :widths: 10 60 :header-rows: 1 :class: longtable * - Result ID - Result * - ``nObservationsCorrelation`` - Pointer to the :math:`1 \times 1` numeric table with the number of observations processed so far. .. note:: By default, this result is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``CSRNumericTable``. * - ``sumSVD`` - Pointer to the :math:`1 \times p` numeric table with partial sums computed so far. .. note:: By default, this table is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. * - ``sumSquaresSVD`` - Pointer to the :math:`1 \times p` numeric table with partial sums of squares computed so far. .. note:: By default, this table is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. Algorithm Output ---------------- The PCA algorithm in the online processing mode calculates the results described below. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Output for Principal Component Analysis (Online Processing) :widths: 10 60 :header-rows: 1 :class: longtable * - Result ID - Result * - ``eigenvalues`` - Pointer to the :math:`1 \times p` numeric table that contains eigenvalues in the descending order. * - ``eigenvectors`` - Pointer to the :math:`p \times p` numeric table that contains eigenvectors in the row-major order. .. note:: By default, these results are objects of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``.