.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ Batch Processing **************** Algorithm Input --------------- The PCA algorithm accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Input for Principal Component Analysis (Batch Processing) :widths: 10 60 :header-rows: 1 :align: left :class: longtable * - Input ID - Input * - ``data`` - Use when the input data is a normalized or non-normalized data set. Pointer to the :math:`n \times p` numeric table that contains the input data set. .. note:: This input can be an object of any class derived from ``NumericTable``. * - ``correlation`` - Use when the input data is a correlation matrix. Pointer to the :math:`p \times p` numeric table that contains the correlation matrix. .. note:: This input can be an object of any class derived from ``NumericTable`` except ``PackedTriangularMatrix``. Algorithm Parameters -------------------- The PCA algorithm has the following parameters, depending on the computation method parameter method: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.3}|\Y{0.4}| .. list-table:: Algorithm Parameters for Principal Component Analysis (Batch Processing) :widths: 10 10 15 25 :header-rows: 1 :align: left :class: longtable * - Parameter - method - Default Value - Description * - ``algorithmFPType`` - ``defaultDense`` or ``svdDense`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - Not applicable - ``defaultDense`` - Available methods for PCA computation: For CPU: - ``defaultDense`` - the correlation method - ``svdDense`` - the SVD method For GPU: - ``defaultDense`` - the correlation method * - ``covariance`` - ``defaultDense`` - `SharedPtr >` - The correlation and variance-covariance matrices algorithm to be used for PCA computations with the correlation method. * - ``normalization`` - ``svdDense`` - `SharedPtr>` - The data normalization algorithm to be used for PCA computations with the SVD method. * - ``nComponents`` - ``defaultDense``, ``svdDense`` - :math:`0` - The number of principal components :math:`p_r`. If it is zero, the algorithm will compute the result for :math:`p_r = p`. * - ``isDeterministic`` - ``defaultDense``, ``svdDense`` - ``false`` - If true, the algorithm applies the "sign flip" technique to the results. * - ``resultsToCompute`` - ``defaultDense``, ``svdDense`` - ``none`` - The 64-bit integer flag that specifies which optional result to compute. Provide one of the following values to request a single characteristic or use bitwise OR to request a combination of the characteristics: - ``mean`` - ``variance`` - ``eigenvalue`` Algorithm Output ---------------- The PCA algorithm calculates the results described below. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Output for Principal Component Analysis (Batch Processing) :widths: 10 60 :header-rows: 1 :align: left :class: longtable * - Result ID - Result * - ``eigenvalues`` - Pointer to the :math:`1 \times p_r` numeric table that contains eigenvalues in the descending order. .. note:: By default, this result is an object of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. * - ``eigenvectors`` - Pointer to the :math:`p_r \times p` numeric table that contains eigenvectors in the row-major order. .. note:: By default, this result is an object of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable`` except ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. * - ``means`` - Pointer to the :math:`1 \times p_r` numeric table that contains mean values for each feature. Optional. If correlation is provided then the vector is filed with zeroes. * - ``variances`` - Pointer to the :math:`1 \times p_r` numeric table that contains mean values for each feature. Optional. If correlation is provided then the vector is filed with zeroes. * - ``dataForTransform`` - Pointer to key value data collection containing the aggregated data for normalization and whitening with the following key value pairs: - mean - mean - variance - variance - eigenvalue - eigenvalue If ``resultsToCompute`` does not contain mean, the dataForTransform means table is NULL. If ``resultsToCompute`` does not contain variances, the ``dataForTransform`` variances table is NULL. If ``resultsToCompute`` does not contain eigenvalues, the ``dataForTransform`` eigenvalues table is NULL. Please note the following: .. note:: - If the function result is not requested through the ``resultsToCompute`` parameter, the respective element of the result contains a NULL pointer. - By default, each numeric table specified by the collection elements is an object of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable``, except for ``PackedSymmetricMatrix``, ``PackedTriangularMatrix``, and ``CSRNumericTable``. - For the ``svdDense`` method :math:`n` should not be less than :math:`p`. If :math:`n > p`, svdDense returns an error.