.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ .. _saga_solver: Stochastic Average Gradient Accelerated Method ============================================== The Stochastic Average Gradient Accelerated (SAGA) [Defazio2014]_ follows :ref:`the algorithmic framework of an iterative solver ` with one exception. The default method (``defaultDense``) of SAGA algorithm is a particular case of the iterative solver method with the batch size :math:`b = 1`. Details ******* Algorithmic-specific transformation :math:`T`, the set of intrinsic parameters :math:`S_t` defined for the learning rate :math:`\eta`, and algorithm-specific vector :math:`U` and power :math:`d` of `Lebesgue space `_ are defined as follows: .. math:: S_t = \{ G^t \} .. math:: G^t = (G_i^t)_{i = 1, \ldots, n} .. math:: G^0 \equiv (G_i^0)_{i = 1, \ldots, n} \equiv F_i'(\theta_0)_{i = 1, \ldots, n} :math:`S_t` is a matrix of the gradients of smooth terms at point :math:`\theta_t`, where - :math:`t` is defined by the number of iterations the solver runs - :math:`G_i^t` stores the gradient of :math:`f_i(\theta_t)` :math:`T(\theta_{t-1}, F_j'(\theta_{t-1}), S_{t-1}, M(\theta_{t-1}))`: #. :math:`W_t = \theta_{t-1} - \eta_j \left[ F_j'(\theta_{t-1}) - G_j^{t-1} + \frac{1}{n} \sum_{i=1}^{n} G_i^{t-1}\right]` #. :math:`\theta_t = \mathrm{prox}_{\eta}^{M} (W_t)` Update of the set of intrinsic parameters :math:`S_t`: .. math:: G_j^{t-1} = F_j'(\theta_{t-1}) .. note:: The algorithm enables automatic step-length selection if learning rate :math:`\eta` was not provided by the user. Automatic step-length will be computed as :math:`\eta = \frac{1}{L}`, where :math:`L` is the Lipschitz constant returned by objective function. If the objective function returns ``nullptr`` to numeric table with ``lipschitzConstant`` Result ID, the library will use default step size :math:`0.01`. Convergence checks: - :math:`U = \theta_t - \theta_{t - 1}`, :math:`d = \infty` - :math:`|x|_{\infty} = \underset{i \in [0, p]} \max(|x^i|)`, :math:`x \in R^p` Computation *********** The stochastic average gradient (SAGA) algorithm is a special case of an iterative solver. For parameters, input, and output of iterative solvers, see :ref:`Iterative Solver > Computation `. Algorithm Input --------------- In addition to the :ref:`input of the iterative solver `, the SAGA optimization solver has the following optional input: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}| .. list-table:: Algorithm Input for Stochastic Average Gradient Accelerated Method Computation :widths: 10 10 60 :align: left * - OptionalDataID - Default Value - Description * - ``gradientTable`` - Not applicable - A numeric table of size :math:`n \times p` which represents :math:`G_0` matrix that contains gradients of :math:`F_i(\theta)`, :math:`1, \ldots, n` at the initial point :math:`\theta_0 \in R^p`. This input is optional: if the user does not provide the table of gradients for :math:`F_i(\theta)`, :math:`1, \ldots, n`, the library will compute it inside the SAGA algorithm. .. note:: This parameter can be an object of any class derived from ``NumericTable``, except for ``PackedTriangularMatrix``, ``PackedSymmetricMatrix``, and ``CSRNumericTable``. Algorithm Parameters -------------------- In addition to parameters of the iterative solver, the SAGA optimization solver has the following parameters: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}| .. list-table:: Algorithm Parameters for Stochastic Average Gradient Accelerated Method Computation :widths: 10 10 60 :header-rows: 1 :align: left :class: longtable * - Parameter - Default Value - Description * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``defaultDense`` - Performance-oriented method. * - ``batchIndices`` - :math:`1` - A numeric table of size :math:`\mathrm{nIterations} \times 1` with 32-bit integer indices of terms in the objective function. If no indices are provided, the implementation generates random index on each iteration. .. note:: This parameter can be an object of any class derived from ``NumericTable``, except for ``PackedTriangularMatrix``, ``PackedSymmetricMatrix``, and ``CSRNumericTable``. * - ``learningRateSequence`` - Not applicable - The numeric table of size :math:`1 \times \mathrm{nIterations}` or :math:`1 \times 1` that contains learning rate for each iterations is first case, otherwise constant step length will be used for all iterations. It is recommended to set diminishing learning rate sequence. If ``learningRateSequence`` is not provided, the learning rate will be computed automatically via ``constantOfLipschitz`` Result ID. .. note:: This parameter can be an object of any class derived from ``NumericTable``, except for ``PackedTriangularMatrix``, ``PackedSymmetricMatrix``, and ``CSRNumericTable``. * - ``engine`` - `SharedPtr` - Pointer to the random number generator engine that is used internally for generation of 32-bit integer index of term in the objective function. Algorithm Output ---------------- In addition to the :ref:`output of the iterative solver `, the SAGA optimization solver calculates the following optional result: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}| .. list-table:: Algorithm Output for Stochastic Average Gradient Accelerated Method Computation :widths: 10 10 60 :align: left * - OptionalDataID - Default Value - Description * - ``gradientTable`` - Not applicable - A numeric table of size :math:`n \times p` that represents matrix :math:`G_t` updated after all iterations. This parameter can be an object of any class derived from ``NumericTable``, except for ``PackedTriangularMatrix``, ``PackedSymmetricMatrix``, and ``CSRNumericTable``. Examples ******** .. tabs:: .. tab:: C++ (CPU) Batch Processing: - :cpp_example:`saga_dense_batch.cpp ` - :cpp_example:`saga_logistic_loss_dense_batch.cpp ` .. tab:: Python* Batch Processing: - :daal4py_example:`saga.py`