.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ Min-max ======= Min-max normalization is an algorithm to linearly scale the observations by each feature (column) into the range :math:`[a, b]`. Problem Statement ***************** Given a set :math:`X` of :math:`n` feature vectors :math:`x_1 = (x_{11}, \ldots, x_{1p}), \ldots, x_n = (x_{n1}, \ldots, x_{np})` of dimension :math:`p`, the problem is to compute the matrix :math:`Y = (y_{ij})_{n \times p}` where the :math:`j`-th column :math:`(Y)_j = (y_{ij})_{i = 1, \ldots, n}` is obtained as a result of normalizing the column :math:`(X)_j = (x_{ij})_{i = 1, \ldots, n}` of the original matrix as: .. math:: y_{ij} = a + \frac {x_{ij} - \min(j)}{\max(j) - \min(j)} (b-a), where: .. math:: \min(j) = \min _{i = 1, \ldots, n} x_{ij}, .. math:: \max(j) = \max _{i = 1, \ldots, n} x_{ij}, :math:`a` and :math:`b` are the parameters of the algorithm. Batch Processing **************** Algorithm Input --------------- The min-max normalization algorithm accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Input for Min-max (Batch Processing) :widths: 10 60 :header-rows: 1 * - Input ID - Input * - ``data`` - Pointer to the numeric table of size :math:`n \times p`. .. note:: This table can be an object of any class derived from ``NumericTable``. Algorithm Parameters -------------------- The min-max normalization algorithm has the following parameters: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}| .. list-table:: Algorithm Parameters for Min-max (Batch Processing) :header-rows: 1 :widths: 10 10 60 :align: left :class: longtable * - Parameter - Default Value - Description * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``defaultDense`` - Performance-oriented computation method, the only method supported by the algorithm. * - ``lowerBound`` - :math:`0.0` - The lower bound of the range to which the normalization scales values of the features. * - ``upperBound`` - :math:`1.0` - The upper bound of the range to which the normalization scales values of the features. * - ``moments`` - `SharedPtr >` - Pointer to the low order moments algorithm that computes minimums and maximums to be used for min-max normalization with the defaultDense method. For more details, see :ref:`Batch Processing for Moments of Low Order `. Algorithm Output ---------------- The min-max normalization algorithm calculates the result described below. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. For more details, see ``Algorithms``. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Output for Min-max (Batch Processing) :widths: 10 60 :header-rows: 1 * - Result ID - Result * - ``normalizedData`` - Pointer to the :math:`n \times p` numeric table that stores the result of normalization. .. note:: By default, the result is an object of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable`` except ``PackedTriangularMatrix``, ``PackedSymmetricMatrix``, and ``CSRNumericTable``. Examples ******** .. tabs:: .. tab:: C++ (CPU) Batch Processing: - :cpp_example:`minmax_dense_batch.cpp ` .. tab:: Python* Batch Processing: - :daal4py_example:`normalization_minmax.py`