.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ Batch Processing **************** Input +++++ Centroid initialization for K-Means clustering accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Input for K-Means Initialization (Batch Processing) :widths: 10 60 :header-rows: 1 :align: left * - Input ID - Input * - ``data`` - Pointer to the :math:`n \times p` numeric table with the data to be clustered. .. note:: The input can be an object of any class derived from ``NumericTable``. Parameters ++++++++++ The following table lists parameters of centroid initialization for K-Means clustering, which depend on the initialization method parameter method. .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.15}|\Y{0.55}| .. list-table:: Algorithm Parameters for K-Means Initialization (Batch Processing) :widths: 10 10 10 30 :header-rows: 1 :align: left :class: longtable * - Parameter - method - Default Value - Description * - ``algorithmFPType`` - any - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - Not applicable - ``defaultDense`` - Available initialization methods for K-Means clustering: For CPU: * ``defaultDense`` - uses first nClusters points as initial centroids * ``deterministicCSR`` - uses first nClusters points as initial centroids for data in a CSR numeric table * ``randomDense`` - uses random nClusters points as initial centroids * ``randomCSR`` - uses random nClusters points as initial centroids for data in a CSR numeric table * ``plusPlusDense`` - uses K-Means++ algorithm [Arthur2007]_ * ``plusPlusCSR`` - uses K-Means++ algorithm for data in a CSR numeric table * ``parallelPlusDense`` - uses parallel K-Means++ algorithm [Bahmani2012]_ * ``parallelPlusCSR`` - uses parallel K-Means++ algorithm for data in a CSR numeric table For GPU: * ``defaultDense`` - uses first nClusters points as initial centroids * ``randomDense`` - uses random nClusters points as initial centroids * - ``nClusters`` - any - Not applicable - The number of clusters. Required. * - ``nTrials`` - * ``parallelPlusDense`` * ``parallelPlusCSR`` - :math:`1` - The number of trails to generate all clusters but the first initial cluster. For details, see [Arthur2007]_, section 5 * - ``oversamplingFactor`` - * ``parallelPlusDense`` * ``parallelPlusCSR`` - :math:`0.5` - A fraction of nClusters in each of nRounds of parallel K-Means++. L=nClusters*oversamplingFactor points are sampled in a round. For details, see [Bahmani2012]_, section 3.3. * - ``nRounds`` - * ``parallelPlusDense`` * ``parallelPlusCSR`` - :math:`5` - The number of rounds for parallel K-Means++. (L*nRounds) must be greater than nClusters. For details, see [Bahmani2012]_, section 3.3. * - ``engine`` - any - `SharePtr< engines:: mt19937:: Batch>()` - Pointer to the random number generator engine that is used internally for random numbers generation. Output ++++++ Centroid initialization for K-Means clustering calculates the result described below. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Algorithm Output for K-Means Initialization (Batch Processing) :widths: 10 60 :header-rows: 1 :align: left * - Result ID - Result * - ``centroids`` - Pointer to the :math:`nClusters \times p` numeric table with the cluster centroids. .. include:: ./../../includes/default_result_numeric_table.rst