.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ Distributed Processing ====================== The distributed processing mode assumes that the data set R is split in ``nblocks`` blocks across computation nodes. Parameters ********** In the distributed processing mode, initialization of item factors for the implicit ALS algorithm has the following parameters: .. tabularcolumns:: |\Y{0.2}|\Y{0.2}|\Y{0.6}| .. list-table:: Parameters for Implicit Alternating Least Squares Initialization (Distributed Processing) :widths: 10 20 30 :header-rows: 1 :align: left :class: longtable * - Parameter - Default Value - Description * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``fastCSR`` - Performance-oriented computation method for CSR numeric tables, the only method supported by the algorithm. * - ``nFactors`` - :math:`10` - The total number of factors. * - ``fullNUsers`` - :math:`0` - The total number of users :math:`m`. * - ``partition`` - Not applicable - A numeric table of size either :math:`1 \times 1` that provides the number of input data parts or :math:`(\mathrm{nblocks} + 1) \times 1`, where ``nblocks`` is the number of input data parts, and the :math:`i`-th element contains the offset of the transposed :math:`i`-th data part to be computed by the initialization algorithm. * - ``engine`` - `SharePtr< engines:: mt19937:: Batch>()` - Pointer to the random number generator engine that is used internally at the initialization step. To initialize the implicit ALS algorithm in the distributed processing mode, use the one-step process illustrated by the following diagram for :math:`\mathrm{nblocks} = 3`: .. figure:: images/implicit-als-distributed-init-general-scheme.png :width: 600 :align: center :alt: Implicit Alternating Least Squares Initialization: General Schema of Distributed Processing .. _implicit_als_distributed_init_step_1: Step 1 - on Local Nodes *********************** .. figure:: images/implicit-als-distributed-init-step-1.png :width: 600 :align: center :alt: Implicit Alternating Least Squares Initialization: Distributed Processing, Step 1 - on Local Nodes Input ----- In the distributed processing mode, initialization of item factors for the implicit ALS algorithm accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Input for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 1) :widths: 10 60 :header-rows: 1 * - Input ID - Input * - ``dataColumnSlice`` - An :math:`n_i \times m` numeric table with the part of the input data set. Each node holds :math:`n_i` rows of the full transposed input data set :math:`R^T`. The input should be an object of ``CSRNumericTable`` class. Output ------ In the distributed processing mode, initialization of item factors for the implicit ALS algorithm calculates the results described below. Pass the ``Partial Result ID`` as a parameter to the methods that access the results of your algorithm. Partial results that correspond to the ``outputOfInitForComputeStep3`` and ``offsets`` Partial Result IDs should be transferred to :ref:`Step 3 of the distributed ALS training algorithm `. Output of Initialization for Computing Step 3 (``outputOfInitForComputeStep3``) is a key-value data collection that maps components of the partial model on the :math:`i`-th node to all local nodes. Keys in this data collection are indices of the nodes and the value that corresponds to each key :math:`i` is a numeric table that contains indices of the factors of the items to be transferred to the :math:`i`-th node on :ref:`Step 3 of the distributed ALS training algorithm `. User Offsets (``offsets``) is a key-value data collection, where the keys are indices of the nodes and the value that correspond to the key :math:`i` is a numeric table of size :math:`1 \times 1` that contains the value of the starting offset of the user factors stored on the :math:`i`-th node. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Output for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 1) :widths: 10 60 :header-rows: 1 :class: longtable * - Partial Result ID - Result * - ``partialModel`` - The model with initialized item factors. The result can only be an object of the ``PartialModel`` class. * - ``outputOfInitForComputeStep3`` - A key-value data collection that maps components of the partial model to the local nodes. * - ``offsets`` - A key-value data collection of size ``nblocks`` that holds the starting offsets of the factor indices on each node. * - ``outputOfStep1ForStep2`` - A key-value data collection of size ``nblocks`` that contains the parts of the input numeric table: :math:`j` -th element of this collection is a numeric table of size :math:`m_j \times n_i`, where :math:`m_1 + \ldots + m_{\mathrm{nblocks}} = m` and the values :math:`m_j` are defined by the ``partition`` parameter. .. _implicit_als_distributed_init_step_2: Step 2 - on Local Nodes *********************** .. figure:: images/implicit-als-distributed-init-step-2.png :width: 600 :align: center :alt: Implicit Alternating Least Squares Initialization: Distributed Processing, Step 2 - on Local Nodes Input ----- This step uses the results of the previous step. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Input for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 3) :widths: 10 60 :header-rows: 1 * - Input ID - Input * - ``inputOfStep2FromStep1`` - A key-value data collection of size nblocks that contains the parts of the input data set: :math:`i` -th element of this collection is a numeric table of size :math:`m_i \times n_i`. Each numeric table in the collection should be an object of CSRNumericTable class. Output ------ In this step, implicit ALS initialization calculates the partial results described below. Pass the ``Partial Result ID`` as a parameter to the methods that access the results of your algorithm. Partial results that correspond to the ``outputOfInitForComputeStep3`` and ``offsets`` Partial Result IDs should be transferred to :ref:`Step 3 of the distributed ALS training algorithm `. Output of Initialization for Computing Step 3 (``outputOfInitForComputeStep3``) is a key-value data collection that maps components of the partial model on the :math:`i`-th node to all local nodes. Keys in this data collection are indices of the nodes and the value that corresponds to each key i is a numeric table that contains indices of the user factors to be transferred to the i-th node on :ref:`Step 3 of the distributed ALS training algorithm `. Item Offsets (``offsets``) is a key-value data collection, where the keys are indices of the nodes and the value that correspond to the key :math:`i` is a numeric table of size :math:`1 \times 1` that contains the value of the starting offset of the item factors stored on the :math:`i`-th node. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Output for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 2) :widths: 10 60 :header-rows: 1 :class: longtable * - Partial Result ID - Result * - ``dataRowSlice`` - An :math:`m_j \times n` numeric table with the mining data. :math:`j`-th node gets :math:`m_j` rows of the full input data set :math:`R`. * - ``outputOfInitForComputeStep3`` - A key-value data collection that maps components of the partial model to the local nodes. * - ``offsets`` - A key-value data collection of size ``nblocks`` that holds the starting offsets of the factor indices on each node.