.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ .. _implicit_als_distributed_prediction: Distributed Processing: Prediction of Ratings ============================================= The distributed processing mode assumes that the data set is split in ``nblocks`` blocks across computation nodes. Algorithm Parameters ******************** At the prediction stage, implicit ALS recommender in the distributed processing mode has the following parameters: .. tabularcolumns:: |\Y{0.15}|\Y{0.15}|\Y{0.7}| .. list-table:: Prediction Parameters for Implicit Alternating Least Squares Computation (Distributed Processing) :widths: 10 10 60 :header-rows: 1 :align: left :class: longtable * - Parameter - Default Value - Description * - ``computeStep`` - Not applicable - The parameter required to initialize the algorithm. Can be: - ``step1Local`` - the first step, performed on local nodes * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``defaultDense`` - Performance-oriented computation method, the only method supported by the algorithm. * - ``nFactors`` - :math:`10` - The total number of factors. Use the one-step computation schema for implicit ALS recommender prediction in the distributed processing mode, as explained below and illustrated by the graphic for :math:`\mathrm{nblocks} = 3`: Step 1 - on Local Nodes *********************** Prediction of rating uses partial models, which contain the parts of user factors :math:`X_1, X_2, \ldots, X_{\mathrm{nblocks}}` and item factors :math:`Y_1, Y_2, \ldots, Y_{\mathrm{nblocks}}` produced at the training stage. Each pair of partial models :math:`(X_i , Y_j)` is used to compute a numeric table with ratings :math:`R_{ij}` that correspond to the user factors and item factors from the input partial models. .. figure:: images/implicit-als-distributed-computation-prediction-step-1.png :width: 800 :align: center :alt: Prediction with Implicit Alternating Least Squares: Distributed Processing, Step 1 - on Local Nodes In this step, implicit ALS recommender-based prediction accepts the input described below. Pass the ``Input ID`` as a parameter to the methods that provide input for your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Input for Implicit Alternating Least Squares Computation (Distributed Processing, Step 1) :widths: 10 60 :header-rows: 1 :class: longtable * - Input ID - Input * - ``usersPartialModel`` - The partial model trained by the implicit ALS algorithm in the distributed processing mode. Stores user factors that correspond to the :math:`i`-th data block. * - ``itemsPartialModel`` - The partial model trained by the implicit ALS algorithm in the distributed processing mode. Stores item factors that correspond to the :math:`j`-th data block. In this step, implicit ALS recommender-based prediction calculates the result described below. Pass the ``Result ID`` as a parameter to the methods that access the results of your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Output for Implicit Alternating Least Squares Computation (Distributed Processing, Step 1) :widths: 10 60 :header-rows: 1 :align: left * - Result ID - Result * - ``prediction`` - Pointer to the :math:`m_i \times n_j` numeric table with predicted ratings. .. note:: By default this table is an object of the ``HomogenNumericTable`` class, but you can define it as an object of any class derived from ``NumericTable`` except ``PackedTriangularMatrix``, ``PackedSymmetricMatrix``, and ``CSRNumericTable``.