.. ****************************************************************************** .. * Copyright 2020 Intel Corporation .. * .. * Licensed under the Apache License, Version 2.0 (the "License"); .. * you may not use this file except in compliance with the License. .. * You may obtain a copy of the License at .. * .. * http://www.apache.org/licenses/LICENSE-2.0 .. * .. * Unless required by applicable law or agreed to in writing, software .. * distributed under the License is distributed on an "AS IS" BASIS, .. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. * See the License for the specific language governing permissions and .. * limitations under the License. .. *******************************************************************************/ AdaBoost Multiclass Classifier ============================== AdaBoost (short for "Adaptive Boosting") is a popular boosting classification algorithm. The AdaBoost algorithm performs well on a variety of data sets except some noisy data ([Friedman98]_, [Zhu2005]_). The library supports two methods for the algorithms: - SAMME, or Stagewise Additive Modeling using a Multi-class Exponential loss function [Zhu2005]_ - SAMME.R, which is a modification of SAMME method for Real-valued returned probabilities from weak learner Details ******* Given :math:`n` feature vectors :math:`x_1 = (x_{11}, \ldots, x_{1p}), \ldots x_n = (x_{n1}, \ldots, x_{np})` of size :math:`p`, a vector of class labels :math:`y = (y_1, \ldots, y_n)` where :math:`y_i \in K = \{-1, 1\}` in case of binary classification and :math:`y_i \in K = \{ 0, \ldots, C-1 \}`, where :math:`C` is a number of classes, describes the class :math:`t` the feature vector :math:`x_i` belongs to, and :math:`h_t` is a weak learner algorithm, the problem is to build an AdaBoost classifier. Training Stage ************** .. tabs:: .. group-tab:: SAMME method The following scheme shows the major steps of the SAMME algorithm: #. Initialize weights :math:`D_1(i) = \frac{1}{n}` for :math:`i = 1, \ldots, n` #. For :math:`t = 1, \ldots, T`: - Train the weak learner :math:`h_t(i)` using weights :math:`D_t`. - Choose a confidence value :math:`\alpha_t = \log \frac{1 - \mathrm{err}_t}{\mathrm{err}_t} + \log(C-1)`, where :math:`\mathrm{err}_t = \frac{\sum_{i=1}{n} D_t(i) I(y_i \neq h_t(i))}{\sum_{i=1}{n} D_t(i)}` - Update :math:`D_{t+1}(i) = \frac{D_t{i} \mathrm{exp}(-\alpha_t I(y_i \neq h_t(i)))}{Z_t}`, where :math:`Z_t` is a normalization factor. #. Output the final hypothesis: .. math:: H(x) = \underset{k} {\mathrm{argmax}} \sum_{t=1}^{T} \alpha_t I(h_t{x} = k) .. note:: SAMME algorithm in case of binary classification is equal to the AdaBoost algorithm from [Friedman98]_. .. group-tab:: SAMME.R method The following scheme shows the major steps of the SAMME.R algorithm: #. Initialize weights :math:`D_1(i) = \frac{1}{n}` for :math:`i = 1, \ldots, n` #. For :math:`t = 1, \ldots, T`: - Train the weak learner :math:`h_t(i)` using weights :math:`D_t`. - Receive the weighed class probability estimates from weak learner: .. math:: p_k^t(x) = \mathrm{Prob}_w \{ c = k | x\}, k = 0, \ldots, C-1 - For :math:`k = 0, \ldots, C-1`, set :math:`s_k^t(x)`: .. math:: s_k^t(x) = (C-1) \left( \log p_k^t(x) - \frac{1}{C} \sum_{k=0}^{C-1} \log p_k^t(x) \right) - For :math:`i = 1, \ldots, n`, update :math:`D_{t+1}(i)`: .. math:: D_{t+1}(i) = \frac{1}{Z_t} \mathrm{exp} \left(- \frac{C-1}{C} z_i^T \log p^t (x) \right) where :math:`Z_t` is a normalization factor, :math:`z_i = (z_{i1}, \ldots, z_{iC})`, :math:`z_{ik} = \begin{cases} 1, & k = y_i \\ - \frac{1}{K-1}, & k \neq y_i \end{cases}` #. Output the final hypothesis: .. math:: H(x) = \underset{k} {\mathrm{argmax}} \sum_{t=1}^{T} s_k^t(x) Prediction Stage ---------------- .. tabs:: .. group-tab:: SAMME method Given the AdaBoost classifier and :math:`r` feature vectors :math:`x_1, \ldots, x_r`, the problem is to calculate the final class :math:`H(x)`: .. math:: H(x) = \underset{k} {\mathrm{argmax}} \sum_{t=1}^{T} \alpha_t I(h_t{x} = k) .. group-tab:: SAMME.R method Given the AdaBoost classifier and :math:`r` feature vectors :math:`x_1, \ldots, x_r`, the problem is to calculate the final class :math:`H(x)`: .. math:: H(x) = \underset{k} {\mathrm{argmax}} \sum_{t=1}^{T} s_k^t(x) where :math:`s_k^t(x)` is as defined above in `Training Stage`_. Batch Processing **************** AdaBoost classifier follows the general workflow described in :ref:`classification_usage_model`. Training -------- For a description of the input and output, refer to :ref:`classification_usage_model`. At the training stage, an AdaBoost classifier has the following parameters: .. tabularcolumns:: |\Y{0.2}|\Y{0.2}|\Y{0.6}| .. list-table:: Training Parameters for AdaBoost Multiclass Classifier (Batch Processing) :header-rows: 1 :widths: 10 20 30 :align: left :class: longtable * - Parameter - Default Value - Description * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``defaultDense`` - Available methods for computation of the AdaBoost algorithm: - ``samme`` - uses the classifier that returns labels as weak learner - ``sammeR`` - uses the classifier that returns probabilities of belonging to class as weak learner - ``defaultDense`` is equal to ``samme`` method * - ``weakLearnerTraining`` - Pointer to an object of the classification stump training class - Pointer to the training algorithm of the weak learner. By default, a classification stump weak learner is used. * - ``weakLearnerPrediction`` - Pointer to an object of the classification stump prediction class - Pointer to the prediction algorithm of the weak learner. By default, a classification stump weak learner is used. * - ``accuracyThreshold`` - :math:`0.01` - AdaBoost training accuracy. * - ``maxIterations`` - :math:`100` - The maximal number of iterations for the algorithm. * - ``learningRate`` - :math:`1.0` - Multiplier for each classifier to shrink its contribution. * - ``nClasses`` - :math:`2` - The number of classes. * - ``resultsToCompute`` - :math:`0` - The 64-bit integer flag that specifies which extra characteristics of AdaBoost to compute. Current version of the library only provides the following option: ``computeWeakLearnersErrors`` Output ------ In addition to classifier output, AdaBoost calculates the result described below. Pass the ``Result ID`` as a parameter to the methods that access the result of your algorithm. For more details, see :ref:`algorithms`. .. tabularcolumns:: |\Y{0.2}|\Y{0.8}| .. list-table:: Training Output for AdaBoost Multiclass Classifier (Batch Processing) :header-rows: 1 :widths: 10 60 :align: left * - Result ID - Result * - ``weakLearnersErrors`` - A numeric table :math:`1 \times \mathrm{maxIterations}` containing weak learner's classification errors computed when the ``computeWeakLearnersErrors`` option is on. .. note:: By default, this result is an object of the ``HomogenNumericTable`` class, but you can define the result as an object of any class derived from ``NumericTable``. Prediction ---------- For a description of the input and output, refer to :ref:`classification_usage_model`. At the prediction stage, an AdaBoost classifier has the following parameters: .. tabularcolumns:: |\Y{0.2}|\Y{0.2}|\Y{0.6}| .. list-table:: Prediction Parameters for AdaBoost Multiclass Classifier (Batch Processing) :header-rows: 1 :widths: 10 20 30 :align: left :class: longtable * - Parameter - Default Value - Description * - ``algorithmFPType`` - ``float`` - The floating-point type that the algorithm uses for intermediate computations. Can be ``float`` or ``double``. * - ``method`` - ``defaultDense`` - Performance-oriented computation method, the only method supported by the AdaBoost classifier at the prediction stage. * - ``weakLearnerPrediction`` - Pointer to an object of the classification stump prediction class - Pointer to the prediction algorithm of the weak learner. By default, a classification stump weak learner is used. * - ``nClasses`` - :math:`2` - The number of classes. Examples ******** .. tabs:: .. tab:: C++ (CPU) Batch Processing: - :cpp_example:`adaboost_samme_two_class_batch.cpp ` - :cpp_example:`adaboost_sammer_two_class_batch.cpp ` - :cpp_example:`adaboost_samme_multi_class_batch.cpp ` - :cpp_example:`adaboost_sammer_multi_class_batch.cpp `